

NAVSAHYADRI GROUP OF INSTITUTES, FACULTY OF ENGINEERING

Sr. No. 69,70,71, Naigaon (Nasarapur), Pune-Satara Highway, Pune-412213

Department: First Year Engineering Year: FE/SE/ TE/ BE: FE Course Title: Data Engineering mathematics-I Course Objectives (CO):

Course Objectives:

To make the students familiarize with concepts and techniques in Calculus, Fourier series and Matrices. The aim is to equip them with the techniques to understand advanced level mathematics and its applications that would enhance analytical thinking power, useful in their disciplines.

Course Outcomes (COs):

The students will be able to learn

CO1: Mean value theorems and its generalizations leading to Taylors and Maclaurin's series useful in the

analysis of engineering problems.

CO2: the Fourier series representation and harmonic analysis for design and analysis of periodic continuous

and discrete systems. \bigcirc

CO3: to deal with derivative of functions of several variables that are essential in various branches of Engineering. \bigcirc

CO4: to apply the concept of Jacobian to find partial derivative of implicit function and functional dependence. Use of partial derivatives in estimating error and approximation and finding extreme values of

the function.

CO5: the essential tool of matrices and linear algebra in a comprehensive manner for analysis of system of linear equations, finding linear and orthogonal transformations, Eigen values and Eigen vectors applicable to

engineering problems O

TLO

UNIT I: DIFFERENTIAL CALCULUS

- TLO1. Explain the concept of Rolle's and Mean Value Theorem
- TLO2. Find Taylor's and Maclaurian's series of differentiable functions.
- TLO3. Apply L'Hospital's rule to evaluate the limit of indeterminate forms.

UNIT II: FOURIER SERIES

- TLO4. Obtain Fourier series expansion of a function in given interval.
- TLO5. Find Fourier series for available numerical data using harmonic analysis.
- TLO6. Apply Parseval's identity to solve the engineering problems

UNIT III: PARTIAL DIFFERENTIATION

TLO7. Explain the concept of partial differentiation, total derivative and find partial derivative of

composite function.

TLO8. Explain Euler's theorem on homogeneous functions.

NAVSAHYADRI GROUP OF INSTITUTES, FACULTY OF ENGINEERING

Sr. No. 69,70,71, Naigaon (Nasarapur), Pune-Satara Highway, Pune-412213

UNIT IV: - APPLICATIONS OF PARTIAL DIFFERENTIATION

- TLO9. Explain the concept Jacobian with illustrations.
- TLO10. Find the Jacobian of composite and Implicit functions and explain functional Dependence

and Independence of function by using Jacobian.

TLO11. Find error and approximate value of functions.

TLO12. Apply the concept of partial differentiation to find stationary points of functions

of two or more variables.

UNIT V: - LINEAR ALGEBRA -MATRICES, SYSTEM OF LINEAR EQUATIONS

- TLO13. Find the Rank by using Echelon form and Normal Form of Matrix.
- TLO14. Solve the system of linear equations by Matrix Method.
- TLO15. Explain linear dependence and independence vectors, Linear and Orthogonal transformation of vectors.

UNIT V: - LINEAR ALGEBRA - EIGEN VALUES & EIGEN VECTORS, DIAGONALIZTION

TLO16. Find the Eigen values and Eigen vectors of Matrix and apply the Cayley Hamilton

theorem to find inverse of a matrix.

TLO17. Apply Diagonaliztion matrix to reduce quadratic form to canonical form by using Linear &

Orthogonal transformation.

TLO to CO Mapping with the help of Articulation Matrix: -

	CO: 1	CO: 2	CO: 3	CO: 4	CO: 5
TLO: 1	\checkmark				
TLO: 2	\checkmark				
TLO: 3	\checkmark				
TLO: 4		\checkmark			
TLO: 5		\checkmark			
TLO: 6		\checkmark			
TLO: 7			\checkmark		
TLO: 8			✓		
TLO: 9				\checkmark	
TLO: 10				✓	
TLO: 11				\checkmark	
TLO: 12				\checkmark	
TLO: 13					\checkmark
TLO: 14					\checkmark
TLO: 15					\checkmark
TLO: 16					✓
TLO: 17					✓

NAVSAHYADRI GROUP OF INSTITUTES, FACULTY OF ENGINEERING

Sr. No. 69,70,71, Naigaon (Nasarapur), Pune-Satara Highway, Pune-412213

CO To PO Mapping with Articulation Matrix:

	PO 1	PO 2	PO3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	2	-	-	-	-	1	-	-	-	-	-	1
CO2	2	-	-	-	-	1	-	-	-	-	-	1
CO3	2	-	-	-	-	1	-	-	-	-	-	1
CO4	2	-	-	-	-	1	-	-	-	-	-	1
CO5	2	-	-	-	_	1	-	-	-	-	-	1

Direct Assessment Tools for CO Attainment

Course Outcome	Assessment tool	% total	Result
CO1	UT, IE, A, PE, UE	А	
CO2	UT, IE, A, PE, UE	В	
CO3	A, PE, UE	С	
CO4	A, PE, UE	D	
CO5	A, PE, UE	Е	

Principal

NESGI, Faculty of Engineering Gat No.69,70,71,Naigaon, Tal. Bhor, Dist. Pune

Navsahyadri Education Society's

Group of Institution's

Sr.No. 69,70 & 71 , Naigaon, Nasrapur, Pune - Satara Road , Dist. - Pune.

Department of Mechanical Engineering

Course Outcome- PO Mapping (CO- PO Mapping)

SE (Mechanical Engineering) -2019 Pattern

Course Code	Name of Subject/ Course	Course Outcome (COs)
		Sem I
		DEFINE various types of stresses and strain developed on determinate and indeterminate members.
		DRAW Shear force and bending moment diagram for various types of transverse loading and support.
202041	Solid	COMPUTE the slope & deflection, bending stresses and shear stresses on a beam.
202041	Mechanics	CALCULATE torsional shear stress in shaft and buckling on the column.
		APPLY the concept of principal stresses and theories of failure to determine stresses on a 2-D element.
		UTILIZE the concepts of SFD & BMD, torsion and principal stresses to solve combined loading application based problems.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	М	-	-	-	s	-	-	-	_	-	-
CO2	Н	Н	М	-	-	-	-	-	-	-	-	
CO3	М	Н	S	-	-	s	-	-	-	-	-	_
CO4	Н	S	s	-	-	-	-	-	-	-	-	-
CO5	-	-	-	-	Н	-	-	Н	-		-	-
CO6	S	-	-	-	-	-	-	-	-	-	-	-
202042	Solid Modeling and Drafting	UNDERSTAND basic concepts of CAD system, need and scope in Product Lifecycle Management UTILIZE knowledge of curves and surfacing features and methods to create complex solid geometry CONSTRUCT solid models, assemblies using various modeling techniques & PERFORM mass property analysis, including creating and using a coordinate system APPLY geometric transformations to simple 2D geometries USE CAD model data for various CAD based engineering applications viz. production drawings, 3D printing, FEA, CFD, MBD, CAE, CAM, etc. USE PMI & MBD approach for communication										solid RM mass

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	Н	Н		Н	М			М			М		
CO2	н	н	н	Н	Н				М	М	М			
СОЗ					Н									
CO4					Н									
CO5					Н									
CO6					Н									
		DESCRI	BE the b	asics of	thermod	ynamics	with hea	t and wo	ork intera	eractions.				
		APPLY la	ws of th	ermodyn	amics to	steady f	low and :	non-flow	process	es.				
202042	Engineering	APPLY e1	ntropy, a	vailable	and non	availabl	e energy	for an O	pen and	Closed S	System,			
202043	202043 Thermodynami s			properti	es of ste	am and t	heir effe	ct on per	formanc	e of vapo	our powe	r cycle.		
		ANALYSI	E the fue	el combu	stion pro	ocess and	1 product	s of com	bustion.					
	-	SELECT various instrumentations required for safe and efficient operation of steam generator.												

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	Н	Н	Н			М			М			М	
CO2	Н	н	Н	Н	Н				М	м	м		
СОЗ					Н								
CO4					Н								
CO5		н											
CO6					Н								
		COMPAR	E crysta	l structı	ires and	ASSESS	different	t lattice p	paramete	ers.			
		CORREL materials	ATE crys s.	stal stru	ctures ar	nd imper	fections i	in crysta	ls with n	nechanic	al behav	iour of	
000044	Engineering	DIFFERI destructi	ENTIATE ve testin	and DE ig of mat	TERMIN erials.	E mecha	nical pro	perties u	ising des	tructive	and non	-	
202044	Metallurgy	IDENTIF compone	Y & EST nt, grain	IMATE d ns, grain	lifferent j boundai	paramete y, and d	ers of the egree of f	system freedom.	viz., pha etc.	ses, varia	ables,		
		ANALYSI alloy.	E effect o	of alloyin	g elemer	nt & heat	treatme	nt on pro	operties o	of ferrous	s & nonf	errous	
	S	SELECT	SELECT appropriate materials for various applications.										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	Н				М			М			М
CO2	н	н	Н	н					М	М	М	
СОЗ	н											
CO4		н										
CO5		Н										
CO6			Н									
		APPLY p embedde	rogramn ed syster	ning cono ns	cepts to U	JNDERS'	TAND ro	le of Mic	roproces	sor and l	Microcon	troller in
		DEVELC Atmega3	P interf 28 base	acing of o d Arduin	lifferent o Board	types of s	sensors a	and othe	r hardwa	re device	es with	
000156	Electrical and	UNDERS	STAND t	he opera	tion of D	C motor,	its spee	d control	method	s and bra	aking	
203156	Electronics Engineering	DISTING	UISH b	etween ty	pes of th	ree phas	se induct	ion moto	or and its	s charact	eristic fe	atures
		EXPL	AIN abo	ut emerg	ing techr	ology of	Electric	Vehicle (EV) and	its modu	ılar subs	systems
	С	CHOOSE energy storage devices and electrical drives for EVs										

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	Н				М			М			М
CO2	н	н	н	н					М	м	м	
СОЗ	н											
CO4		н										
C05		н										
CO6			н									

Sem II

		SOLVE higher order linear differential equations and its applications to model and analyze mass spring systems.
		APPLY Integral transform techniques such as Laplace transform and Fourier transform to solve differential equations involved in vibration theory, heat transfer and related mechanical engineering applications.
207002	Engineering Mathematics - III	APPLY Statistical methods like correlation, regression in analyzing and interpreting experimental data applicable to reliability engineering and probability theory in testing and quality control.
		PERFORM Vector differentiation & integration, analyze the vector fields and APPLY to fluid flow problems.
		SOLVE Partial differential equations such as wave equation, one and two dimensional heat flow equations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	м	н	м	м		м						
CO2	м	н	н	н	н	н						
СОЗ	м	н	м	н		н						
CO4	м	м	н	н		н						
CO5	м	м	н	н		н						
CO6												
		APPLY k	inematic	analysis	s to simp	le mecha	nisms					
		ANALYZ	E velocit	y and aco	celeratio	n in mec	hanisms	by vecto	or and gr	aphical r	nethod	
202047	Kinematics of Machinery	f SYNTHESIZE a four bar mechanism with analytical and graphical methods										
		APPLY fi	ındamen	itals of g	ear theor	y as a pi	rerequisi	te for gea	ar design	L		
		CONSTRUCT cam profile for given follower motion										

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	м	_	-	_	_	м						
CO2	м	н	-	-	-	-						
СОЗ	Н	М	М	-	-	-						
CO4	н	М	М	-	-	-						
CO5	н	н	М	-	М	-						
CO6												
		DETERM	IINE CO	P of refri	geration	system a	and ANA	LYZE psy	/chromet	ric proce	esses.	
		DISCUS	S basics	of engine	e termino	ology,air	standaro	l, fuel ai	r and act	ual cycle	es.	
202040	Applied	IDENTIF	Y factors	affectin	g the cor	nbustion	perform	ance of	SI and C	I engines	3.	
202048	s	DETERM	IINE per	formance	e parame	ters of I	C Engine	s and en	nission c	ontrol.		
				g of vario	us IC Er	igine sys	tems and	d use of a	alternati	ve fuels.		
		CALCUL rotary po	ATE perf sitive di	formance splaceme	of single ent comp	e and mu pressors	ılti stage	reciproc	ating co	mpresso	rs and D	ISCUSS

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	м	-	-	-	-	м						
CO2	м	н	-	-	-	-						
CO3	н	м	м	-	-	-						
CO4	н	м	м	-	-	-						
CO5	н	н	м	-	м	-						
CO6												
CO6		DETERM	IINE vari	ious prop	perties of	fluid						
		APPLY th	ne laws o	f fluid st	atics and	l concep	ts of buc	oyancy				
202040	Fluid	IDENTIF	Y types o	of fluid fl	ow and t	erms ass	sociated	in fluid l	cinematio	cs		
202049	Fluid Mechanics	APPLY p	rinciples	of fluid o	lynamics	s to lami	nar flow					
		ESTIMAT formation	TE frictio n over ar	n and m 1 externa	inor loss 1 surface	es in int e	ernal flo	ws and I	DETERM	INE bour	ndary lay	ver
	f C I	CONSTR predict t	UCT ma he perfor	thematic rmance o	al correla f prototy	ation cor pe using	nsidering g model l	g dimens aws	ionless p	aramete	rs, also A	ABLE to

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-	м						
CO2	н	н	-	-	-	-						
СОЗ		н	Н	-	-	-						
CO4	н	м	н	-	-	-						
CO5	н	н		-	н	-						
CO6	н		н									
		SELECT solidifica	appropr ation rate	iate mou e and DE	ulding, co SIGN ris	ore makir er size a	ng and m nd locati	nelting pr ion for sa	actice ar and casti	nd estima ng proce	ate pour ss	ing time,
		UNDERS flat rollin	STAND n ng	nechanis	m of met	al formir	ng techni	iques an	d CALCU	LATE loa	ad requi	red for
000050	Manufacturing	DEMON and tool	STRATE s for forr	press wo ning and	orking op shearin	erations g operati	and APF ons	PLY the b	asic prin	nciples to	DESIGI	N dies
202050	Processes	CLASSII	TY and E	XPLAIN	different	welding	processe	es and EV	/ALUATE	E welding	g charact	eristics
		DIFFER techniqu	ENTIATE 1es	thermo	plastics a	and ther	mosettin	g and EX	XPLAIN p	olymer p	rocessin	g
		UNDERS composi	STAND ti tes	he princi	ple of ma	nufactu	ring of fi	bre-reinf	orce com	posites a	and meta	al matrix

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	_	-	-	м						
CO2	н	н	-	-	-	-						
СО3		н	н	-	-	-						
CO4	н	м	н	-	-	-						
CO5	н	н		-	н	-						
CO6	н		н									
	H	PERFOR	M weldir	ng using '	TIG/ MI	G/ Resis	tance/G	as weldi	ng techni	ique		
		MAKE Fi	bre-rein	forced Co	omposite	s by han	d lay-up	process	or spray	lay-up t	echnique	es
000051	Maalaina Olaan	PERFOR	M cylind	rical/su	face grir	nding ope	eration a	nd CALC	ULATE i	ts machi	ining tim	ie
202051	Machine Shop	DETERM gear on a	lINE nur a horizon	nber of in Ital millir	ndexing i ng machi	movemer ne	nts requi	red and	acquire s	skills to I	PRODUC	E a spur
		PREPARI	E indust	ry visit re	eport							
	ι Γ	UNDERS	TAND p	rocedure	of plasti	c proces	sing					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-	м						
CO2	н	н	-	-	-	-						
СОЗ		н	н	-	-	-						
CO4	н	м	н	-	-	-						
CO5	Н	н		-	н	-						
CO6	н		н									
		IDENTIF literature	Y the rea e survey	al-world j and form	problem nulate /	(possibly set releva	of inter ant aims	disciplin and obj	ary natu ectives	re) throu	gh a rigo	orous
		ANALYZI	E the res	ults and	arrive at	valid co	nclusior	18				
000050	Project Based	PROPOS possibly	E a suita integrati	able solu on of pre	tion base viously a	ed on the acquired	fundan knowled	ientals o Ige	f mechar	nical eng	ineering	by
202052	Project Based I Learning - II	CONTRII and safe	BUTE to ty measu	society t tres	hrough p	proposed	solution	ns by stri	ctly follo	wing pro	fessional	l ethics
		USE of to	echnolog	y in prop	osed wo	rk and d	emonstr	ate learn	ing in or	al and w	ritten fo	rm
	E	DEVELO	P ability	to work	as an in	dividual	and as a	team m	ember			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-	м						
CO2	н	н	-	-	_	_						
СОЗ		н	н	-	-	-						
CO4	н	м	н	-	-	-						
CO5	н	н		-	н	-						
CO6	н		Н									

Navsahyadri Education Society's

Group of Institution's

Sr.No. 69,70 & 71 , Naigaon, Nasrapur, Pune - Satara Road , Dist. - Pune.

Department of Mechanical Engineering

Course Outcome- PO Mapping (CO- PO Mapping)

TE (Mechanical Engineering) -2019 Pattern

		Sem I
		SOLVE system of equations using direct and iterative numerical methods.
		ESTIMATE solutions for differential equations using numerical techniques.
302041	Numerical and I Statistical Methods	DEVELOP solution for engineering applications with numerical integration.
502041		DESIGN and CREATE a model using a curve fitting and regression analysis.
		APPLY statistical Technique for quantitative data analysis.
		DEMONSTRATE the data, using the concepts of probability and linear algebra.

CO-PO Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	н	-	-	-	-	М								
CO2	н	н	-	-	-	-								
CO3		н	н	-	-	-								
CO4	н	м	н	-	_	-								
CO5	н	н		-	н	-								
CO6	н		н											
		ANALYZ system.	E & APF	PLY the r	nodes of	heat tra	nsfer eq	uations f	or one di	mension	al therm	al		
		DESIGN conduct	a thern ion.	nal syste	em cons	idering f	ins, the	rmal ins	ulation a	and & Tr	ransient	heat		
302042	Heat and Mass	EVALUA experim	TE the entatio	heat tra n results	nsfer ra s.	te in nat	tural and	d forced	convect	ion & va	lidate w	ith		
001011	Transfer	INTERPR surfaces.	ET heat t	ransfer b <u>y</u>	y radiatio	n betwee	n objects	with simp	ole geome	tries, for 1	black and	grey		
		ABILITY t diffusion	o analyze in differe	e the rate nt coordii	of mass nate syst	transfer u ems.	ising Fick	s's Law of	Diffusion	and und	erstands	mass		
		DESIGN & ANALYSIS of heat transfer equipments and investigation of its performance.												
CO-PO Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	н	-	-	-	-	М								
CO2	н	н	-	-	-	-								
СОЗ		н	н	-	-	-								
CO4	н	м	н	-	-	-								
CO5	н	н		-	н	_								
CO6	н		Н											
		DESIGN . loading.	AND ANA	LYZE the	cotter ai	nd knuck	le Joints,	levers an	d compon	ients subj	jected to e	eccentric		
		DESIGN	shafts, ke	eys and co	ouplings	under sta	tic loadin	ıg conditie	ons.					
302043	Design of Machine	ANALYZE	different	stresses	in power	screws a	nd APPLY	those in	the proce	dure to d	esign scr	ew jack.		
	Elements	EVALUAT	E dimen	sions of n	nachine c	omponen	ts under	fluctuatir	ng loads.					
		EVALUAT	Ъ & INTI	ERPRET t	he stress	develope	d on the o	different t	ype of wel	ded and t	threaded	joints.		
		APPLY th	e design a	and devel	opment <u>p</u>	procedure	for differ	ent types	of spring	8.				

				CO-P	O Maj	pping								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
C01	н	-	-	_	-	М								
CO2	н	н	-	-	-	-								
CO3		н	н	-	_	-								
CO4	н	м	н	-	-	-								
CO5	н	н		-	н	-								
CO6	н		н											
		DEFINE	key eler	ments of	mechat	ronics, p	rinciple	of sensor	and its	character	ristics.			
		UTILIZE	concept o	of signal p	processin	g and MA	KE use o	f interfaci	ng syster	ns such as	s ADC, DA	AC, Digital		
		DETERM	INE the t	ransfer fi	unction b	ov using b	lock diag	ram redu	ction tech	inique.				
302044	Mechatronics	EVALUA system.	TE Poles	and Zero	, frequen	cy domai	n parame	ter for ma	athematic	al modelir	ng for mee	hanical		
		APPLY th	e concep	t of differ	ent contr	oller mod	.es to an i	ndustrial	applicati	on.				
		DEVELO	DEVELOP the ladder programming for industrial application.											
		221220	i the lad	CO-P	O Maj	pping	indi uppi	oution						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	н	-	_	-	_	м								
CO2	н	н	_	-	_	_								
CO3		н	н	-	-	_								
CO4	н	м	н	_	-	_								
CO5	н	н		_	н	_								
CO6	н		н											
		ANALYSE	the effe	ct of fricti	on in me drawing	tal formir	ng deep di	rawing an	d IDENTI	FICATION	of surfac	e defects		
		ASSESS	the para	neters for	special :	forming o	peration	and SELF	CT appro	priate spe	cial formi	ng		
	Advanced	operation		iculai app	JICATIONS	•								
302045-A	Forming & Joining	ANALYSE CLASSIF	E the effe Y various	s solid sta	on micro te weldin	structure g process	e and mee and SEI	chanical <u>p</u> .ECT suit	properties able weld:	of materiang proces	als ses for pa	rticular		
	Processes	application CLASSIF	ons Y various	advance	d welding	g process	and SEL	ECT suita	ble weldi	ng process	ses for par	ticular		
		applicatio	ons.							51	L	-		
		INTERPR	ET the p	rinciples o	of sustaiı	nable mar	nufacturi	ng and its	s role in n	anufactu	ring indu	stry.		

CO-PO Mapping															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	н	-	-	-	-	м									
CO2	н	н	-	-	-	-									
CO3		н	Н	-	-	-									
CO4	н	м	н	-	-	-									
CO5	н	н		-	н	-									
CO6	н		Н												
		DEFINE 1	metal cut	ting prine	ciples and	1 mechan	ics of me	tal cuttin	g and too	l life.					
		DESCRIE	BE feature	es of gear	and thre	ad manu	facturing	processe	s.						
302045-B	Machining Science	SELECT :	appropria	te grindi	ng wheel	and demo	onstrate t	he variou	is surface	finishing	processe	s.			
	&Technology	SELECT	' appropi	riate jigs	/fixtures	s and to	draw the	process	plan for	a given o	compone	nt.			
SELECT & EVALUATE various parameters of process planning.															
		GENERATE CNC program for Turning / Milling processes and generate tool path using CAM software.													
	CO-PO Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	н	-	-	-	-	м									
CO2	н	н	-	-	-	-									
СОЗ		н	н	-	-	-									
CO4	н	м	н	-	-	-									
CO5	н	н		-	н	-									
CO6	н		н												
		DEVELC Manufac)P a com cturing T	ponent echniqu	using co es.	nvention	al mach	ines, CN	C machir	nes and A	Additive				
	Digital	ANALYZE	C cutting	tool parai	meters fo	r machini	ing given	job.							
302046	Manufacturing Laboratory	DEMONS	STRATE s	imulation	n of manu	Ifacturing	process	using Dig	gital Manu	ufacturing	Tools.				
		SELECT :	and DES	IGN jigs a	and Fixtu	res for a g	given com	iponent.							
		DEMONE	STRATE	different	paramete	ers for CN	C retrofit	ting and	reconditic	ning.					

CO-PO Mapping														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	н	-	-	-	-	м								
CO2	н	н	-	-	-	-								
СОЗ		н	н	-	-	-								
CO4	н	М	н	-	-	-								
CO5	н	н		-	н	-								
CO6	н		н											
302047	Skill Development	DESIGN d EVALUAT IDENTIFY design of	DESIGN & DEVELOP a working/model of machine parts or any new product. EVALUATE fault with diagnosis on the machines, machine tools and home appliances. IDENTIFY & DEMONSTRATE the various activities performed in an industry such as maintenance, design of components, material selection. CO-PO Manning											
	CO-PO Mapping													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	н	-	-	-	-	м								
CO2	н	н	-	-	-	-								
CO3		н	н	-	-	-								
CO4	н	м	н	-	-	-								
CO5	н	н		-	н	-								
CO6	н		н											
	T			5	Sem II									
		DEMONS	TRATE fu	indament	als of art	ificial int	elligence a	and mach	iine learn	ıng.				
		APPLY fea	ature extr	action an	d selectio	on techni	ques.							
202040	Artificial Intelligence &	APPLY ma	achine lea	arning alg	orithms	for classi	fication a	nd regres:	sion prob	lems.				
302049	Machine Learning	DEVISE A	AND DEV	ELOP a n	nachine le	earning n	nodel usir	ng various	s steps.					
		EXPLAIN	concepts	of reinfor	ced and	deep lear	ning.							
		SIMULAT	E machir	ie learnin	g model i	n mecha	nical engi	neering p	roblems.					
	I	1		CO-P	О Мар	ping								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	Н	-	-	-	_	м								

CO2	н	н	-	-	-	-						
СОЗ		н	н	-	-	-						
CO4	н	м	н	-	_	_						
CO5	н	н		-	н	-						
CO6	н		н									
06		DEFINE t formulatio APPLY the	he use of ons. e various	CAE tool	s and DE technique	SCRIBE t	he signifi er evalua	cance of the second sec	shape fur	ections in	finite eler	ment
202050	Computer Aided	APPLY ma to obtain	aterial pro nodal or o	operties a: elemental	nd bound solution.	ary condi	tion to S	OLVE 1-I) and 2-D	element	stiffness	matrices
302050	Computer Aided Engineering	ANALYZE	and APP	LY variou	s numerio	cal metho	ds for dif	ferent typ	es of ana	lysis.		
		EVALUAT from anal	E and SC ytical and	LVE non l computa	-linear an ational m	d dynam ethod.	ic analysi	is probler	ns by ana	lyzing the	e results o	obtained
	(GENERAT	TE the res	sults in th	e form of	contour	plot by th	e USE of	CAE tools	3.		

				CO-I	PO Maj	pping								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	н	-	_	-	_	М								
CO2	н	н	-	-	_	-								
СОЗ		н	н	-		-								
CO4	н	М	н	-	-	-								
CO5	н	н		-	Н	-								
CO6	н		н											
302051	Design of Transmission Systems	APPLY th manufac EXPLAIN SELECT applicati DEFINE APPLY va ELABO with hyl	H H APPLY the principle of Spur & Helical gear design for industrial application and PREPARE a manufacturing drawing with the concepts of GD&T. EXPLAIN and DESIGN Bevel & Worm gear considering design parameters as per design standards. SELECT&DESIGN Rolling and Sliding Contact Bearings from manufacturer's catalogue for a typical application considering suitable design parameters. DEFINE and DESIGN various types of Clutches, Brakes, used in automobile. APPLY various concept to DESIGN Machine Tool Gear box, for different applications ELABORATE various modes of operation, degree of hybridization and allied terms associated											

				CO-F	O Maj	pping						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-	М						
CO2	н	н	-	_	-	_						
СОЗ		н	н	-	-	-						
CO4	н	М	н	-	-	-						
CO5	н	н		-	н							
CO6	н	DEDINE	Н									
		DEFINE	& COMP	ARE com	posites w	ith traditi	onal mat	erials.				
		IDENTIF	r & ESII		ierent pa	rameters		ymer Ma		oosite		
302052- A	Composite	CATEGO	RISE and	APPLY N	Metal Mat	rix Proces	ss from p	ossession	is landsca	ape.		
	Materials	DETERM	IINE volu	me/weigh	nt fraction	n and stre	ength of C	Composite	es.			
		SELECT	appropria	ate testin	g and ins	pection n	tethod for	r composi	ite materi	als.		
		SELECT	composit	es materi	ials for va	rious app	olications	•				
	T		1	CO-F	O Maj	pping					1	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	н	-	-	-	-	М						
CO2	н	н	-	-	-	-				_		
СОЗ		н	н	-	-	-				_		
CO4	н	М	н	-	-	-				_		
CO5	н	н		-	н							
CO6	н	DEFINE	H	'a main aim	10.9-0000	haniama	f a11#fo.oo	domodoti	l			
		ANALVSE	T & SELE	CT corror					or a diffor	ant comrise	oonditio	
		DEMON						miques io	or a differ		contantio.	
302052-В	Surface	DEMONS			surface	engineerii	ng or mate		noany/m	iprove the	surface I	properties.
	Engineering	SELECT	the suita	ble surfac	ce heat tr	eatments	to impro	ve the su	rtace proj	perties.		
		APPLY th	e surface	modifica	ation tech	inique to	modify su	iriace pro	operties.	. , .	· · ··	
		ANALYSE	L & EVAL	UTE vari	ous surfa	ice coatin	g detects	using vai	rious test	ing/chara	cterizatio	n method.

				CO-F	PO Maj	pping						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-	м						
CO2	н	н	-	-	-	_				PO9 PO10 PO11 PO Image: PO9 PO10 PO11 PO Image: PO10 PO11 PO PO		
CO3		н	н	-	-	-						
CO4	н	м	н	-	-	-						
CO5	н	н		-	н							
CO6	н		н									
		EVALUA' metrolog reduce u ANALYZE	TE causes ical cond ncertaint E strain n	s of errors itions, no y in meas	s in Vern oting devis surement	ier caliper ations at a meters by	rs, micror actual an	neters by d by plott	performin ing cause	ng experin e and effec	nents in s et diagrar deration	standard n, to to
		acknowle	edge its u	sage in fa	ailure det	ection and	d force va	riations.	relabilen		deration	
302053	Measurement Laboratory	EXAMIN surface microme accurac	IE surfa finish re eters, ma y require	ce Textu quireme agnifying ements a	res, surf nts of m glasses nd cost	ace finis etrologica of height of measu	h using o al equipr t gauge a rement.	equipmen nent's lik and more	nt's like ' te gauges , to optir	Falysurf a s, jaws of nize surf	and anal Vernier ace finis	yze calipers, h
		MEASUR actual m	E the dir easureme	nensional ent or cor	l accurac nparison	y using C with stan	omparato Idards se	or and lim t to reduc	it gauges e measur	and appr ement lea	aise thei d time.	usage in
		PERFOR in machi repeatabi	M Testing nes and i ility and i	g of Flow : mechanis reproduci	rate, spee ms like h ibility.	ed and ter ydraulic (nperature or pneum	e measure latic train	ements ar ers, lathe	nd their ef machine	fect on p etc. to in	erformance crease
		COMPILI metrolog	E the info y like cali	rmation o ibrations,	of opporti , testing,	unities of coordinat	entreprei e and las	neurships er metrolo	/busines ogy etc in	s in variou an indus	us sector try visit r	s of eport.
				CO-F	PO Maj	pping					_	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-	м						
CO2	н	н	-	-	-	-						
CO3		н	н	-		-						
CO4	н	м	н	-	-	-						
CO5	н	н		-	н	-						
CO6	н		н									
		DEFINE	working <u>j</u>	principle	of compo	nents use	d in hydı	aulic and	pneuma	tic system	18.	
		IDENTIF	Y & EXPI	AIN vario	ous applie	cations of	hydrauli	c and pne	umatic s	ystems.		
302054	Fluid Power & Control	SELECT manufac	an appro tures' cat	priate con talogues.	mponent	required 1	for hydra	ulic and p	oneumatio	e systems	using	
	Laboratory	SIMULAT	TE & ANA	LYSE var	rious hyd	raulic and	1 pneuma	atic syster	ns for ind	lustrial/m	iobile apj	olications.
		DESIGN	a hydrau	llic and p	neumatic	system f	or the inc	lustrial ap	oplication	s.		
		DESIGN pneumat	& DEMO ics.	NESTRAT	TE variou	s IoT, PLC	C based c	ontrolling	system ı	ising hydi	raulics a	nd

				CO-P	O Maj	pping						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-	м						
CO2	н	н	-	-	-	-						
СОЗ		н	н	-	-	-						
CO4	н	м	н	-	-	-						
CO5	н	н		-	н	-						
CO6	н		н									
		DEMONS	TRATE p	rofession	al compe	tence thr	ough indi	ustry inte	rnship.			
		APPLY kr manner.	nowledge	gained th	rough in	ternships	to compl	ete acade	emic activ	ities in a j	profession	nal
		CHOOSE	appropri	iate techr	iology an	d tools to	solve giv	en proble	m.			
302055	Internship	DEMONS	TRATE a	bilities of	a respon	sible prof	fessional	and use e	ethical pra	actices in	day to da	y life.
		DEVELO	P networl	c and soc	ial circle,	and DEV	/ELOPINC	3 relation	ships wit	h industry	v people.	
		ANALYZE	2 various	career op	portuniti	es and D	ECIDE ca	reer goal	s.			
				CO-P	O Maj	pping						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-	м						
CO2	н	н	-	-	-	-						
CO3		н	н	-	-	-						
CO4	н	м	н	-	-	-						
CO5	н	н		-	н	-						
CO6	н		н									
		EXPLAIN	plan and	l execute	a Mini Pı	oject with	n team.					
		IMPLEMI	ENT hard	ware/soft	ware/an	alytical/r	umerical	techniqu	ies, etc.			
302055	Mini Project	DEVELO	P a techn	ical repoi	rt based o	on the Mi	ni project					
		DELIVER	technica	al semina:	r based o	n the Mir	ni Project	work car	ried out.			
	<u> </u>			CO-P	O Maj	ping						
	DO 1	DOG	POC	DO 1			DC 7	DCC	DCC	DOIO	DOTT	DO12
	PU1	P02	PU3	P04	PU5	P06	PO7	108	P09	PO10	1011	P012
CO1	Н	-	-	-	-	M			H			H
CO2	н	Н	-	-	-	н			Н			

CO3		н	Н	-	-	н			н		н
CO4	н	м	н	-	-	-			н		н
		Nav	sahya	dri E	ducat	ion S	ociety	y's			
			Gro	oup of	Insti	tutio	n's				
		Sr.No. 69,7	0&71,1	Vaigaon, I	Nasrapur,	Pune - S	atara Roa	ad , Dist.	- Pune.		
NAVSAHYADRI EDUCATION SOCIETY		Depar	tmen	t of M	echan	ical E	ngine	ering			
	C	ourse Oi	ıtcom	e- PO	Маррі	ng (CC)- PO I	Mappi	ng)		
		BE (Me	chanio	cal Eng	gineer	ing) -2	019 P	attern	L		

Sem I

		ANALYSE different air-craft refrigeration systems and EXPLAIN the properties, applications and environmental issues of different refrigerants.
		ANALYSE multi pressure refrigeration system used for refrigeration applications.
402041	Heating, Ventilation, Air	DISCUSS types of compressors, condensers, evaporators and expansion valves along with regulatory and safety controls and DESCRIBES Transcritical and ejector refrigeration systems.
402041	Conditioning and Refrigeration	ESTIMATE cooling load for air conditioning systems used with concern of design conditions and indoor quality of air.
		DESIGN air distribution system along with consideration of ventilation and infiltration.
		EXPLAIN the working of types of desiccants, evaporative, thermal storage, radiant cooling, clean room and heat pump systems.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	н	-	-	-	-	м							
CO2	Н	н	-	-	-	-							
CO3		н	н	-	-	-							
CO4	н	м	н	-	-	-							
CO5	н	н		-	н	-							
CO6	н		н										
		APPLY ba engines.	lancing t	echnique	for static	and dyna	amic bala	ncing of r	nulti cylir	nder inlin	e and rad	ial	
		ANALYZE	the gyro	scopic co	uple or ef	fect for sta	abilizatio	n of Ship,	Airplane	and Four	wheeler	vehicles.	
402042	Dynamics of	ESTIMAT	E natural	frequenc	y for sing	le DOF u	n-damped	1 & damp	ed free vi	bratory sy	/stems.		
102012	Machinery	DETERM due to un	INE respo balance f	onse to foi forces.	rced vibra	tions due	e to harm	onic excit	ation, bas	se excitati	ion and e	xcitation	
		due to unbalance forces. ESTIMATE natural frequencies, mode shapes for 2 DOF un-damped free longitudinal and torsional vibratory systems.											
		DESCRIB with suita	E noise a able meth	nd vibrat od for no	ion meas ise and vi	uring inst bration co	truments ontrol.	for indus	strial / rea	al life app	lications	along	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-	м						
CO2	н	н	-	-	-	-						
СОЗ		н	н	-	-	-						
CO4	н	м	н	-	-	-						
CO5	н	н		-	н	-						
CO6	н		н									
402043	Turbomachinery	VALIDATI performan DETERMI nozzles, g MEASURI cavitation EXPLAIN aspects of	E impulse nce chara INE perfo overning E perform and sele performa f axial con	e moment acteristics rmance p mechanis nance para ction. nce para npressor.	principle of hydra arameter sm & loss ameters of neters of	using fla ulic turbin s of impu es. f single & centrifug	nt, incline nes. lse and re multista al compre	d and cur eaction st ge centric	ved surfa eam turbi fugal pun ig with dis	ine along ips along scussion	NVESTIG with disc with disc of theoret	ATE ussion of cussion of

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-							Н
CO2	н	н	-	-	-							
CO3		н	н	-	-	н			н			н
CO4	н	м	н	-	-	-			Н			н
	Automobile	DESIGN o	of Princip	al Engine	Compone	ents						
402044A	Design	DESIGN of Drive train										
		DESIGN	of brake	s and Su	Ispensio	n						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	н	-	-	-	-	м						Н		
CO2	н	н	-	-	-									
СОЗ		н	н	-	-	н			Н			Н		
		EXPLAIN	the desig	gn aspect	of heat e	xchanger	consider	ing foulin	g factor fo	or Heat Tr	ansfer Ap	plications		
		SELECT	and DES	IGN the d	ouble tub	oe heat ex	changers	s for proce	ss indust	ry				
402044B	Design of Heat	DESIGN	SELECT and DESIGN the double tube heat exchangers for process industry											
1020110	Equipments	DESIGN	the conde	ensers an	d evapora	ators for r	efrigerati	on applic	ations					

DESIGN the compact heat exchangers	
ANALYSE the performance of counter and cross flow cooling tower.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	_	-	-	-	M						
CO2	н	н	-	-	-	-						
СО3		н	н	-	-	-						
CO4	н	м	н	-	-	-						
CO5	н	н		-	н	-						
CO6	н		н									
		UNDERS machinir	TAND and	d ANALYZ ses.	E the me	chanism,	process	paramete	rs of mec	hanical as	ssisted m	odern
		UNDERS machinir	TAND theng.	e mechani	sm, cons	truction a	and worki	ng of lase	er, plasma	a and elec	tron bear	n assisted
4020440	Modern	CLASSIF machinir	Y and AN. 1g.	ALYZE th	e mechan	ism, proc	ess para	meters of	the chem	ical and e	electroche	emical
1020110	Processes	RELATE for an ap	and ANAI plication.	YZE the 1	mechanis	m and se	lect proce	ess paran	eters Ele	ctrical Dis	scharge M	lachining
		ILLUSTR	ATE the a	pplicatior	ı of micro	machinin	ng process	ses.				
		SUGGES	T appropi	riate nanc	machinir	ng process	s for the s	specific a	oplication			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12			
CO1	н	-	-	-	-	м									
CO2	н	н	-	-	-	-									
CO3		н	н	-	-	-									
CO4	н	м	н	-	-	-									
CO5	н	н		-	н	-									
CO6	н		н												
		EVALUAT	E the pro	oductivity	and IMP	LEMENT	various p	roductivi	y improv	ement tec	hniques.				
		APPLY wo	ork study	techniqu	es and Ul	NDERSTA	NDS its i	mportano	e for bett	er produc	tivity.				
402044D	Industrial	DEMONS equipmer	TRATE that.	ne ability	to SELEC	T plant lo	ocation, a	ppropriat	e layout a	and mater	ial handl	ing			
1020110	Engineering	USE of Pr shop floor	roduction r control.	planning	g and con	rol tools	for effecti	ve planni	ng, sched	uling and	managir	ng the			
		PLAN inv	EVALUATE the productivity and IMPLEMENT various productivity improvement techniques. APPLY work study techniques and UNDERSTANDS its importance for better productivity. DEMONSTRATE the ability to SELECT plant location, appropriate layout and material handling equipment. USE of Production planning and control tools for effective planning, scheduling and managing the shop floor control. PLAN inventory requirements and EXERCISE effective control on manufacturing requirements. ADDLY Exercise and location for human comfort at work place and UNDERCANDS the release of the set of t												
		APPLY Er value eng	gonomics ineering	s and legis in improv	slations fo ing produ	or human Ictivity.	comfort	at work p	lace and	UNDERS	rands th	ne role of			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	н	_	-	-	-	м							
CO2	н	н	-	-	-	-							
СОЗ		н	н	-	_	_							
CO4	Н	м	н	-	-	-							
CO5	Н	н		-	н	-							
CO6													
		H FXPLAIN the Applications / Devices											
		DEMONS Microcor	STARTE s	mall Mecl nd Cloud	hanical E	ngineerin	g IoT orie	nted appl	ications 1	using Sen	sors, Act	uators,	
402044E	Internet of	Microcontrollers and Cloud SELECT commonly used IoT Simulation Hardware platforms											
	Things	APPLICA	TION of I	nterfacing	g and Con	nmunicat	ion Techr	10logies fo	or IoT				
		ILLUSTI	RATE IoT .	Applicatio	on Develo	pment an	d Securit	y of IoT E	cosystem	L			
		ILLUSTRATE IoT Application Development and Security of IoT Ecosystem											

CO-PO Mapping

	DO 1	DOD	DO2	DO 4	DOF	DOC	DO7	DOB	DOO	DO10	DO11	DO10		
	POI	PO2	PO3	P04	P05	P06	P07	PU8	P09	POID	POII	PO12		
CO1	н	-	-	-	-	м								
CO2	н	н	-	-	-	-								
СОЗ		н	н	-	-	-								
CO4	н	м	н	-	-	-								
CO5	н	н		-	н	-								
CO6	н		н											
		H DISTINGUISH DISTINGUISH and ANALYSE the governing equations of fluid mechanics and heat transfin various formulations												
		ANALYZE	and MO	DEL the c	onductio	n and adv	vection pr	oblems						
4020445	Computational	ANALYZE	and MO	DEL the C	Convection	n-Diffusio	n probler	ns						
4020445	Fluid Dynamics	IDENTIFY	and EV	ALUATE ti	he Extern	al/Intern	al flow ar	nd its sim	ulation					
		DISTING	JISH and	COMPAR	E concep	ts of stab	ility and	turbulene	ce.					
		USE and	APPLY a	CFD tool	for effecti	vely solvii	ng practic	cal Fluid-	Structure	Interacti	on proble	ems		

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

CO1	н	-	-	-	-	м						
CO2	н	н	-	-	-	-						
СОЗ		н	н	_	_	-						
CO4	н	м	н	-	_	-						
C05	н	н		-	н	-						
CO6	н		Н									
		UNDERS	TAND P	roduct de	esign and	l Produc	t develoj	oment pr	ocesses			
		UNDERST	TAND Pro	cesses, to	ols and t	echnique	s for Marl	ket Surve	y & Produ	ict Specif	ication Fi	nalization
Product Design UNDERSTAND Processes, tools and techniques for Concept Inception, Verification and selection												ion
402045A	and Development	UNDERST	TAND Pro	cesses, to	ols and t	echniques	s for Con	cept Expl	oration &	Developn	nent	
		UNDERST	TAND Pro	cesses, to	ols and t	echniques	s for Desi	gn Verific	ation and	l Validatio	on	
		UNDERST	TAND Pro	cesses, to	ols and t	echniques	s for Robi	ust Desig	n and Dev	velopmen	t	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	н	-	-	-	-	м						
CO2	н	н	-	-	-	_						
СОЗ		н	н	-	-	_						
CO4	н	м	н	-	-	-						
CO5	н	н		-	н	-						
CO6	н		н									
		IDENTIFY	the suit:	able instr	ument for	measuri	ng param	neters as j	per perfor	mance ch	aracteris	stics
		ANALYZE	; experime	ental dat <i>e</i>	a by using	different	statistica	al techniq	ues and (estimate ϵ	error	
40004ER	Experimental Methods in	DISTINGI	JISH diffe	erent metl	hods of te	mperatur	e measu	rements a	and therm	ual radiati	on	
402045B	Thermal Engineering	CLASSIFY	r various	pressure	measure	ment inst	ruments	and their	comparis	son		
		EXPLAIN	different	flow meas	surement	methods	and flow	visualiza	tion techı	niques		
		APPLY kn analysis a	owledge o and interj	of modern pretation	ı engineer using diff	ing exper erent AI a	imentatio and ML te	on, includ chniques	ing calibr	ation, da	ta acquis	ition,

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-	м						
CO2	н	н	_	_	_	_						

CO3		н	н	-	-	-						
CO4	н	м	н	-	-	-						
CO5	н	н		-	н	-						
CO6	н		н									
		USE and applicatio	CLASSIF ns.	Y the fund	lamental	s of Addit	ive Manu	facturing	Technolo	gies for e	ngineerin	g
		IDENTIFY curing, LA	′ and CA1 ASER bas	EGORIZE ed techno	E the met ologies an	hodology d STUDY	to manuf their app	acture th	e product , benefits.	s using li	ight-based	l photo-
4000450	Additive	IDENTIFY deposition	and CA1 , inkjet-l	EGORIZE	E the met	hodology and STUI	to manuf DY their a	acture th applicatio	e product ns, benefi	s using e its.	xtrusion-	based
402045C	Manufacturing	SYNTHES	IZE, REC	OMMENI of produ	D and DE ct.	SIGN the	suitable	material	and proce	ess for fat	prication a	and build
		DESIGN &	and CONS	STRUCT t	he AM eq	uipment's	s for appr	opriate aj	pplication	s and the	e input CA	AD model.
		DEVELOR	o the kno	wledge of	additive r	nanufacti	uring for	various r	eal-life ap	plications	3.	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	_	м						
CO2	н	н	-	-	-	-						
СОЗ		н	н	-	-	-						
CO4	н	м	н	-	-	-						
CO5	н	н		-	н	-						
CO6	н		н									
		EVALUA1 them in r	E various eal life for	s situation decision	ns of Gan making.	nes theory	and Dec	ision tecl	nniques a	nd APPLY	them to	solve
		SELECT a solutions	appropria using mo	te model odels for d	for queui lifferent s	ng situati ituations	ons and s	sequencir	ıg situatio	ons and F	IND the c	optimal
40004ED	Operations	Solutions using inducts for uncreated structures. FORMULATE various management problems and SOLVE them using Linear programming using graphical method and simplex method.										
402045D	Research	FORMUL these pro	ATE varie blems us	ty of prot ing linear	olems suc program	h as tran ming app	sportation roach.	n, assignı	nent, trav	velling sal	esman aı	nd SOLVE
		PLAN opt replacem	imum pro ent situat	oject sche ions find	dule for n the optin	etwork m al solutio	odels ari	sing from appropri	a wide ra ate model	nge of ap ls for the	plications	s and for
		APPLY co	ncepts of	simulatio	on and Dy	mamic pr	ogrammi	ng				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-	м						н
CO2	н	н	-	-	-	-						
CO3		н	н	-	-	-						
CO4	н	м	н	-	-	-			н			

CO5	Н	Н		-	н	-							
CO6	н		Н									н	
		UNDERS1 Technique	TAND fun es related	damental to VR/AI	Compute	er Vision,	Compute	er Graphi	cs and Hi	amanCon	nputer Int	eraction	
		UNDERST	AND Geo	ometric M	odeling Te	echniques	3						
402045E	Augmented Reality and	UNDERST	AND the	Virtual E	nvironme	nt							
	Virtual Reality	ality ANALYZE and EVALUATE VR/AR Technologies											
		APPLY vai	rious type	es of Hard	ware and	Software	in Virtua	al Reality	systems				
		DESIGN a	and FORM	IULATE V	/irtual/Au	igmented	Reality A	pplicatio	ns				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	н	-	-	-	-	м						н	
CO2	н	н	-	-	-	-							
СОЗ		н	н	-	-	-							
CO4	н	м	н	-	-	-			н				
CO5	н	н		-	н	-							
CO6	н		н									Н	
		UNDERS	STAND th	ne basics	s of data	analytics	s using c	oncepts	of statist	tics and j	probabili	ty.	
		APPLY various inferential statistical analysis techniques to describe data sets and withdraw useful conclusions from acquired data set.											
402046	Data Analytics Laboratory	lytics tory EXPLORE the data analytics techniques using various tools											
		APPLY da	ta scienc	e concept	and met	hods to se	olve probl	ems in re	al world o	context			
		SELECT a	advanced	techniqu	es to con	duct thor	ough and	insightfu	ıl analysi	s and inte	erpret the	results	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	н	-	-	-	-	М						н		
CO2	н	н	_	-	-	-								
CO3		н	н	-	-	-								
CO4	н	м	н	-	-	-			Н					
CO5	н	н		-	н	-								
		Implement systems approach.												
		To concep	otualize a	novel ide	a / techn	ique into	a produc	t.						

402047	Project (Stage I)	To think in terms of a multi-disciplinary environment.
		To take on the challenges of teamwork, and document all aspects of design work.
		To understand the management techniques of implementing a project.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	н	_	_	_	_	м						Н	
CO2	н	н	_	_	-	-							
CO3		н	н	-	-	-							
CO4	н	м	н	-	-	-			Н				
CO5	н	н		-	н	-							
	Sem II												

		EXPLAIN CIM and factory automation.
		UNDERSTAND the integration of hardware and software elements for CIM
400048	Computer	APPLY CNC program for appropriate manufacturing techniques.
402048	Manufacturing	ANALYZE processes planning, quality and MRP integrated with computers.
		INTERPRET flexible, cellular manufacturing and group technology.
		ANALYZE the effect of IOT, Industry-4.0 and cloud base manufacturing.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	н	-	-	-	_	м						н	
CO2	н	н	-	-	-	_							
СОЗ		н	н	-	-	_							
CO4	н	м	н	-	-	_			Н				
CO5	н	н		-	н	-							
CO6	н		н									н	
		EXPLAIN the impro	the powe oved Ranl	er generat kine cycle	ion scena	ario, the la	ayout cor	nponents	of therm	al power p	olant and	ANALYZE	
		ANALYZE impact of	the perf energy s	ormance o ystems ar	of steam o nd metho	condense ds to con	rs, coolin trol the s	g tower s ame.	ystem; Rl	ECOGNIZ	E an envi	ronmental	
	Energy	EXPLAIN	EXPLAIN the layout, component details of diesel engine plant, hydel and nuclear energy systems.										
402049	Engineering	ANALYZE gas and improved power cycles.											
		EXPLAIN	the fund	amentals	of renew	able enerş	gy systen	18.					

	EXPLAIN basic principles of energy management, storage and economics of power generation.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н		-	-	-	м						н
CO2	Н	н	-	-	-	-						
СОЗ		н	н	-	-	-						
CO4	н	м	н	-	-	-			Н			
CO5	н	н		-	Н	-						
CO6	н		н									Н
402050A	Quality & Reliability Engineering	UNDERS DEVELO UNDERS EVALUAT IDENTIFY UNDERS	TAND bas P analytic TAND fur E system (various TAND the	cal compe indamenta n reliabilit failure m e concept	tencies to l concept y. odes and of reliabi	o SOLVE s of relial CREATE	RELATE · problems bility. ; fault tre red main	e diagran tenance a	n.	and proce	ess capab	ethods.

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	_	-	_	м						н
CO2	Н	н	-	-	-	-						
СОЗ		н	н	-	-	-						
CO4	н	м	н	-	-	-			Н			
CO5	н	н		-	н	-						
CO6	н		н									Н
		EXPLAIN	the ener	gy need a	nd role of	energy n	nanageme	ent				
		CARRY O	UT an en	ergy audi	t of the In	istitute/Ii	ndustry/(Organizat	ion			
402050B	Energy Audit	ASSESS t	he ENCC	N opport	unities us	sing energ	gy econon	nics				
4020508	and Management	ANALYSE	the ener	gy conser	vation pe	rformanc	e of Therr	nal Utiliti	es			
		ANALYSE	the ener	gy conser	vation pe	rformanc	e of Elect	rical Utili	ties			
		EXPLAIN	the energ	y perform	nance imp	orovemen	t by Coge	neration	and WHR	method		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	_	_	-	м						н
CO2	н	н	-	-	-	-						
CO3		н	н	-	-	-						
CO4	н	м	н	-	-	-			Н			
CO5	н	н		-	н	-						
CO6	н		н									н
		UNDERS	ſAND the	concepts	of manu	facturing	system, o	character	istics, typ	e, etc.		
		UNDERS	ſAND the	concepts	of Facilit	ies, manı	ufacturin	g plannin	g & contr	ol and Su	ipport Sy	stem.
4000500	Manufacturing	UNDERS	FAND the	concepts	of manu	facturing	towards	solving p	roductivit	y related	problems	
4020500	Simulation	DEVELOI line balan	P a virtua Icing.	l model to	o solve ind	lustrial e	ngineerin	g related	issues su	ch as cap	acity util	ization,
		BUILDING	G tools to	view and	control s	imulatior	ns and th	eir results	3.			
		PLAN the	data repi	resentatio	n & Eval	uate the r	esults of	the simu	lation.			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	н	-	-	-	-	М						Н		
CO2	н	н	-	-	-	-								
СОЗ		н	н	-	-	-								
CO4	н	м	н	-	-	-			Н					
CO5	н	н		-	н	-								
CO6	н		н									н		
	Engineering	UNDERS APPLY th UNDERS	INDERSTAND the business environment, concepts of economics and demand-supply scenario. IPPLY the concepts of costing and pricing to evaluate the pricing of mechanical components. INDERSTAND accounting systems and analyze financial statements using ratio analysis											
402050D	Economics and Financial Management	SELECT aspects UNDERS	' and PR of budge TAND the	EPARE t t. e internati	he appro	priate ty	rpe of bu	dget and stem func	l underst	and the	controlli	ng		
		DEMONS	TRATE u	nderstand	ling of fin	ancing d	ecisions o	of new ver	ntures an	d perform	lance			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C01	н	-	-	-	-	м						н

CO2	н	н	-	-	-	-						
CO3		н	н	-	-	-						
CO4	н	м	н	-	-	-			Н			
CO5	н	н		-	н	-						
CO6	н		н									Н
		Demonstr organizati	ate an ur on.	ıderstand	ling of the	e scope, p	urpose ai	nd value o	of informa	ation syste	ems in an	L
		Understar	nd the con	nstituents	s of the in	formatior	ı system.					
(000-00-	Organizational	Demonstr aspects.	ate the U	nderstan	ding of th	e manage	ement of j	product d	ata and fe	eatures of	f various 1	PLM
402050E	Informatics	Relate the information	e basic com on usage.	ncepts of	manufac	turing sys	stem and	the ERP	functiona	lities in c	ontext of	
		Understar	nd the ma	unufactur	ing execu	tion syste	em and it	's applica	tions in fi	unctional	areas.	
		Outline th technolog	ne role of i	the inforn	nation sys	stem in va	arious tyj	pes of bus	siness and	d allied en	nerging	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-	М						н
CO2	Н	н	-	-	-	-						
СОЗ		н	н	-	-	-						
CO4	Н	м	н	-	-	-			Н			
CO5	н	н		-	н	-						
CO6	н		н									Н
		APPLY th related ap	e basic te oplication	erminolog s	y and cor	icepts use	ed in Mul	tibody Dy	namics to	o solve va	rieties of	motion
		IDENTIFY	and EV	ALUATE t	he types	of joints, i	its kinem	atics and	relevant	transform	nations	
4000505	Computational	DISTING	UISH and	COMPAI	RE the for	mulation	methods					
402050F	Dynamics	DERIVE of connected	equations d bodies	of motio	n and EV	ALUATE t	he kinem	atics and	l dynamic	es of rigid	Planar in	iter-
		DERIVE	equations	of motio	n and EV	ALUATE t	he kinem	atics of r	igid Spati	al interco	nnected	bodies
		APPLY M problems	BD tool e and its s	ffectively olutions	and SIMU	JLATE it t	o solve aı	nd validat	e practica	al Multibo	ody Dynai	mics

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-	М						Н
CO2	н	н	-	-	-	-						
CO3		н	н	-	-	-						

CO4	н	м	н	-	-	-			н			
CO5	н	н		-	н	-						
CO6	н		н									Н
402051A	Process Equipment Design	INTERPRI ANALYZE DESIGN o DESIGN o EVALUAT APPLY the	ET the dif thin and sylindrica lifferent p E Process e concept:	ferent par thick wa l vessel, s process Ec s paramet s of proce	rameters : lled cylind pherical y quipment ters and t sss equipr	involved i ler vessel, tal s and sele heir corre nent desig	n design I vessels ect pump lation gn for spe	and thick , compres	s Equipm	ents. igh press: nd auxilia	ure vesse ary servic	ls cs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	_	_	_	м						н
CO2	н	Н	-	-	-	-						
СОЗ		н	Н	-	-	-						
CO4	н	м	Н	-	-	-			Н			
CO5	н	н		-	н	-						
CO6	н		н									н
		DESCRIB EXPLAIN	E fundan performa	nents, nee nce aspec	eds and s	copes of r and conc	enewable entric sol	energy s ar collect	ystems. ors along	with app	lications.	
402051B	Renewable Energy Technologies	DESIGN s	and ANA	tovoltaic s	wind ener	r resident gy conver	ial applic	ations. æm.				
		APPLY Ins	stallation	practices	of Wind	and Solar	Photovo	ltaic Syst	ems for g	rid conne	ction.	
		DETERMI	NE perfo	rmance p	arameters	s of bio-eı	nergy con	version s	ystems.			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	_	м						н
CO2	н	н	-	-	-	-						
СОЗ		н	н	-	-	-						
CO4	н	м	н	-	-	-			Н			
CO5	н	н		-	н	-						

CO6	н		н									н	
		UNDERST	TAND the	basic cor	ncepts of A	Automatio	on						
		UNDERST	AND the	basic cor	ncepts of l	Robotics							
4020510	Automation and	IDENTIFY	and EVA	LUATE a	ppropriat	e Drive fo	r Robotic	Applicati	ions				
4020310	Robotics	COMPARI	E and SE	LECT End	1-effectors	and Sen	sors as p	er Applica	ation				
		DEVELOPE the Mathematical Modeling Approaches of Robot											
		EVALUAT	E the fun	damenta	ls of robot	program	ming and	1 CLASSI	FY the Ap	plications	3		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	н	-	-	-	_	м						н	
CO2	Н	н	-	-	-	-							
СОЗ		н	н	-	-	-							
CO4	н	м	н	-	-	-			Н				
CO5	н	н		-	н	-							
CO6	н		н									Н	
		DEMONS psycholog	TRATE fu gy and be	ndament havior.	al knowle	dge abou	t need an	d scope c	of industr	ial - orgar	nizational		
		ANALYZE satisfactio	the job r on.	equireme	nt, have ι	understar	nding of fa	atigue, bo	redom an	id improv	e the job		
4000510	Industrial Psychology and	UNDERS	FAND the	approach	nes to enl	nance the	performa	ince.					
402051D	Organizational Behavior	KNOWLEDGE of theories of organizational behavior, learning and social-system.											
		UNDERSTAND the mechanism of group behavior, various aspects of team, leadership and conflict management.											
		EVALUAT developm	E the org ent appro	anization aches.	al culture	e, manage	e the char	nge and u	nderstan	ds organi	zational		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	-	-	-	м						н
CO2	н	н	-	-	-	-						
CO3		н	н	-	-	-						
CO4	н	м	н	-	_	_			н			
CO5	н	н		-	н	-						
CO6	н		н									н
		UNDERS'	TAND the	basics re	elated to e	-vehicle	•	•		•	•	

		CLASSIFY the different hybrid vehicles
	Flectric and	IDENTIFY and EVALUATE the Prime Movers, Energy Storage and Controllers
402051E	Hybrid Vehicle	DISCOVER and CATAGORIZE the Electric Vehicle Configuration with respect to Propulsion, Power
		distribution and Drive-Train Topologies
		DEVELOP body frame with appropriate suspension system and TESTING of for eVehicles
		CLASSIFY and EVALUATE Battery Charging techniques and management

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	н	-	-	-	-	м						н	
CO2	н	н	-	-	-	-							
СОЗ		н	н	-	-	-							
CO4	н	м	н	-	-	-			Н				
CO5	н	н		-	н	-							
CO6	н		н									Н	
	Mechanical Systems	DEVELOP an understanding of the Systems Engineering Process and the range of factors that influence the product need, problem-specific information collection, Problem Definition, Task Specification, Solution Concept inception, Concept Development, System's Mathematical Modelling, Synthesis, Analysis, final solution Selection, Simulation, Detailed Design, Construction, Prototyping Testing, fault-finding, Diagnosis, Performance Analysis, and Evaluation, Maintenance, Modification, Validation, Planning, Production, Evaluation and use of a system using manual calculation, computational tools to automate product development process, redesign from customer feedback an control of technological systems. ILLUSTRATE the concepts and USE the developed skill-set of use of computational tools (FEA, CFD, MBD, FSI, CAE) to automate the complete product development process.											
402052	Analysis Laboratory	EVALUAT forward to	E the known on the the known of the stars is the second se	owledge o lge of emp	f new dev bloyment	elopment after pass	s and inn sing your	iovations Undergra	in techno duate De	ological sy gree Exar	stems to nination.	carry	
		APPRAISE how technologies have transformed people's lives and can be used to SOLVE challenges associated with climate change, efficient energy use, security, health, education and transport, which will be coming your ways in the coming future.											
		PRIORITI the inten	ZE the co ded purpo	ncept of o ose.	quality an	d standa	rds, inclu	ding syst	ems relia	bility, saf	ety and fi	tness for	
		INVENT y	ourself to	o face the	challenge	s of futur	e techno	logies and	l their as:	sociated F	roblems.		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	Н	-	-	-	Н	н			н		н	Н
CO2	Н	н	-	-	Н	н			Н		н	Н
CO3		н	н	-	Н	н			н		н	н
CO4	Н	М	н	-	Н	н			н		н	н
CO5	н	н		-	Н	н			н		н	Н
CO6	Н		н		Н	Н			Н		Н	Н

		Implement systems approach.
		To conceptualize a novel idea / technique into a product.
402053	Project (Stage II)	To think in terms of a multi-disciplinary environment
		To take on the challenges of teamwork, and document all aspects of design work.
		To understand the management techniques of implementing a project.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	н	-	_	н	н	Н			Н		н	Н
CO2	н	н	-	Н	Н	Н			н		н	Н
СОЗ		н	н	Н	Н	Н			н		н	н
CO4	н	м	н	Н	Н	н			Н		Н	Н
CO5	н	Н		Н	Н	Н			Н		Н	Н

NAVSAHYADRI GROUP OF INSTITUTIONS FACULTY OF MANAGEMENT Approved by AICTE New Delhi Affiliated to <u>Savitribai Phule</u> Pune University

Address: - Sr. No. 69,70,71 NaigaonNasarapurPune, Maharashtra 412213. Website: https://www.navsahyadri.edu.in/E- mail- director@navsahyadri.edu.in

Mr. P N Suke	Prof. <u>Sagar Suke</u>	Dr. <u>Tanaji Dabade</u>	
President	Group Director	Director	

2.6.2 - Attainment of Programme outcomes and course outcomes are evaluated by the institution.

The PSOs, POs, and COs are designed using the top-down approach. The PSOs are in tune with the expectation of professional bodies and society. The program outcomes are carefully fixed studying the graduate attributes and blending those properly to suit the program being offered. To meet these program outcomes, the curriculum is designed by SPPU. While designing the curriculum, feedback from stack holders is incorporated. Each course has specific measurable course outcomes. Each course has 6 units and in general, each unit relates to a specific course outcome. Each course outcome is mapped with the Program Outcomes. While calculating the attainment level bottom to top approach is used. For each course, the attainment level of all course outcomes is arrived at rigorously based on the student performance in the internal and external examinations. Thus, the CO attainment is a combined result of internal and external examinations assessment. This will helps in arriving at the PO assessment as each CO is mapped with certain POs and PSOs. Besides this, the exit survey is taken from students for indirect assessment of the PO's. The alumni and employer surveys are taken for indirect assessment of the PSOs.

NAVSAHYADRI GROUP OF INSTITUTIONS FACULTY OF MANAGEMENT Approved by AICTE New Delhi Affiliated to <u>Savitribai Phule</u> Pune University

Address: - Sr. No. 69,70,71 NaigaonNasarapurPune, Maharashtra 412213. Website: https://www.navsahyadri.edu.in/E- mail- director@navsahyadri.edu.in

	Mr. P N Suke	Prof. Sagar	Suke	Dr. Tanaji Da	bade
	President	Group Direct	tor	Director	
S.NO	Program Outcomes	KSA	Knowledge	Skill	Attitude
		Anticipation-			
		Skill, Business			
	Develop Competencies in students	Acumen-			
	which will help them to perform	Knowledge,			
	well in the dynamic National and	Communication			
	international environment and	Skills-Skill,			
	strive for excellence.	Result			
		orientation-	Business	Anticipation,	Result
PO1		Attitude,	Acumen	Communication	orientation
		C:::4:1			
	The student will be able to	Critical			
	understand the various approaches	I ninking-			
	and practices to understand	Attitude,			
	organisational process and practices	Domain	D .		
DOA		Knowledge-	Domain	Critical	
PO2		Knowledge,	Knowledge	Thinking	
	This program is designed to	Creativity-			
	facilitate student with the	Skill. Decision			
	understanding to develop different	Making-Skill.			
	strategies by critical analysis of the	Research Skill-		Creativity.	
	internal and external environment	Skill.		Decision	
	of the organisation and lead	Sustainability-		Making.	
PO3	sustainable development	Attitude		Research	Sustainability
	Student will be able to develop the				
	culture understanding to appreciate				
	various point of view in the				
	worldwide environment	Cultural			
		Sensitivity-			Cultural
PO4		Attitude,			Sensitivity
		Ethical			
		Orientation-			
		Attitude,			
	The student will be able to	Global			
	demonstrate a high degree of	Perspective-			
	integrity and ethics in behaviour	Knowledge,			Ethical
	megney and cures in behaviour	Positive			Orientation,
		attitude &			Positive
		Integrity-	Global		attitude &
PO5		Attitude,	Perspective		Integrity

NAVSAHYADRI GROUP OF INSTITUTIONS FACULTY OF MANAGEMENT Approved by AICTE New Delhi Affiliated to <u>Savitribai Phule</u> Pune University

Address: - Sr. No. 69,70,71 NaigaonNasarapurPune, Maharashtra 412213. Website: https://www.navsahyadri.edu.in/E- mail- director@navsahyadri.edu.in

	Mr. P N Suke	Prof. <mark>Sagar</mark>	<u>Suke</u>	Dr. <u>Tanaji Da</u>	bade
	President	Group Direct	tor	Director	
PO6	The student will be able to evaluate management decisions, global issues, and business strategies	Analytical Skill-Skill, Data Analysis- Skill, Leadership Skill-Skill, Resource Management and Organisation Capabilities- Knowledge,	Resource Management, Organisation Capabilities	Analytical, Data Analysis, Leadership,	
PO7	Students will be able to apply business productive tools and concepts and the real world scenario	Business Tools- Skill, Concept application ability-Skill,		Business Tools, Concept application ability	
PO8	Students will develop the ability to conceptualize and develop original work in research, product or services design, customer experience, and solution to help business and Society	Innvoation- Attitude, Problem Solving-Skill, Social responsibility- Attitude, Strategic Thinking-Skill,		Problem Solving, Strategic Thinking	Innvoation, Social responsibility
РО9	The student will be able to develop and ability to use digital technology tools to enhance business productive	Technology orientation- Attitude			Technology orientation

<u>Course: International Finance</u> <u>Course Code 305 FIN:</u> <u>Programme: MBA(3rd Semester) Batch2022-2024</u> <u>Academic Year: 2023-2024</u> <u>Credits: 3</u>

(40 Sessions. Each Session for 60 Minutes)

Address: - Sr. No. 69,70,71 NaigaonNasarapurPune, Maharashtra 412213. Website: https://www.navsahyadri.edu.in/E- mail- director@navsahyadri.edu.in

Mr. P N Suke	Prof. <u>Sagar Suke</u>	Dr. <u>Tanaji Dabade</u>	
President	Group Director	Director	

Table of Contents

S.no.	Description	Page No.
1.	Programme Learning Outcomes and Course	3
	Learning outcomes	
2.	Course Perspective	4
3.	Course Outline	5
4.	Session Plan	8
5.	Books & references	11
6.	Evaluation Scheme	15
7.	Alignment and Mapping	17
8.	Evaluation component	18
9.	Rubrics	20
10.	Students 'Roles & Responsibilities	27
11.	Contact details and student interaction	28
	Schedule	

Address: - Sr. No. 69,70,71 NaigaonNasarapurPune, Maharashtra 412213. Website: https://www.navsahyadri.edu.in/E- mail- director@navsahyadri.edu.in

Mr. P N Suke	Prof. <u>Sagar Suke</u>	Dr. <u>Tanaji Dabade</u>	
President	Group Director	Director	

A. Programme Outcome

D	
Programme	Develop competencies in students which will help them to perform well in the dynamic
Outcome - 1	national and international environment and strive for excellence.
Programme	The student will be able to understand the various approaches and practices to
Outcome - 2	understand organizational processes and practices.
	This programme is designed to facilitate students with the understanding to develop
Programme	different strategies by critical analysis of the internal and external environment of the
Outcome - 3	organization and lead sustainable development.
Programme	Students will be able to develop the cultural understanding to appreciate various points of
Outcome - 4	view in a worldwide environment.
Programme	
Outcome - 5	The student will be able to demonstrate a high degree of integrity and ethics in behavior.
Programme	The student will be able to critically evaluate management decisions, global issues, and
Outcome - 6	business strategies.
Programme	Students will be able to apply business productivity tools and concepts in the real world
Outcome - 7	scenario.
Programme	Students will develop the ability to conceptualize and develop original work in research,
Outcome - 8	product/services design, customer experience, and solution to help business and society at
Programme	The student will be able to develop an ability to use digital technology tools to enhance
Outcome - 9	business productivity.

B. Course Perspective

Rapidly integrating markets have stretched firms across borders and increased the importance of foreign operations to firms around the world. In contrast, most finance scholarship and pedagogic material emphasizes firms that are domestic. What do finance practitioners need to know to operate in a global setting? The International Finance Course has been developed to address this question. In the process, the course materials provide students with the analytical tools and frameworks to become a financial or general manager within a multinational firm or to become an intermediary advising or evaluating those firms.

This course overview - introduces the central ideas and architecture of the course for instructors who are considering the material for adoption. The course was developed from 2000 to 2005 with waves of case writing interspersed with discussions with finance practitioners around the world. Various cases have been adopted by instructors around the world. Teaching notes for the cases as well as module notes are available for instructors considering adopting parts of the course. John Wiley & Sons has published the full set of cases in a volume entitled *International Finance: A Casebook*

Why does financial decision- making in a global setting merit attention? How is this material different from other course materials on international finance? The first section of this note

Address: - Sr. No. 69,70,71 NaigaonNasarapurPune, Maharashtra 412213. Website: https://www.navsahyadri.edu.in/E- mail- director@navsahyadri.edu.in

Mr. P N Suke	Prof. <u>Sagar Suke</u>	Dr. <u>Tanaji Dabade</u>	
President	Group Director	Director	

argues that the forces of globalization have fundamentally changed the scope and activities of firms of any size. As a consequence of an increasing reliance on tightly-integrated foreign operations, a parallel world of finance has been opened within every multinational firm and this world has, heretofore, been overlooked. The course materials are designed to address the many aspects of financial decision making within global firms prompted by these changes that are not addressed in traditional materials.

The broad topics cover:

- 1. International finance on conceptual framework
- 2. Corporate Governance
- 3. Forex Management
- 4. International Financing and Investment Management
- 5. IFRS on International Transactions

C. Course learning outcomes (COs)

This course will develop professional skills such as critical thinking, business acumen and risk assessment to work in global environment where fiscal policies are determined consideringonexternalshocks.Studentswillbeabletoevaluatethecrossborderinvestment opportunities and cost of capital raised from overseas market.

CO	COURSEOUTCOMES
CO-1	Enumerate the key terms associated with International Finance.
CO-2	Students can able to understand various concepts related to functions of
	regulators, financial markets, Financial Instruments, tax structures at international level.
CO-3	This course will help to apply the skill of portfolio creation and international risk
	management
	Student can critically analyze the role of international monitory systems & intermediaries
CO-4	in Global financial market. They will also inspect the various parameters of global
	financial market and interpret best possible international investment opportunities.
CO-5	Students can able to evaluate in detail about the various strategies to start
	Investment or business at the international level by considering various factors of
	international finance.
CO-6	Students can able to create and formulate the investment plan or business
	Plan by adapting international finance environment.

Address: - Sr. No. 69,70,71 NaigaonNasarapurPune, Maharashtra 412213. Website: https://www.navsahyadri.edu.in/E- mail- director@navsahyadri.edu.in

Mr. P N Suke		of. <u>Sagar Suke</u>	Dr. <u>Tanaji Dabade</u>		
President	Gi	roup Director	Director		
Course Outcome In	dicator-(COI)				
Enumerate the key terms Associated with International Finance.	Will be able to understand the Various sterms related to Intrenational finance	Will be able to read Forex quotations	Identyfying direct V/S Indirect Quotations	Evaluate the arbitrage opportunities	Abilit y to apply all Concepts in International business
To understand various Concepts related to functions regulators, financial markets, Financial Instruments, tax Structures at international Level	Able to analyse the international Financial market	Understanding how To raise funds from International market	Evaluating Financial Instruments with risk - return Tradeoffs	Analyzing tax Impact on cross border investments	Able to identify issues Related to compliances And procedures
To apply the skill of Portfolio creation and International risk management	Develop critical thinking	Able to compare domestic returns with international returns	Developing Domain expertise	Able to Compare IFRS With IndAs	Identifying impact of Exchange rate volatility, Ppp and IRP on cross Border investments and finances
Can critically have analyzed The role of international Monitory systems & Intermediaries in Global Financial market.	Able to identify the toxic assets	Can analyse the role of international credit rating agencies	Can able to compare the nation's credibility And integrity in cross border business opportunities	Able to analyse The scope and limitations of domestic companies dealing in international business	Analyzing macro Economic factors that affecting cost and revenue of the Company
Can able to evaluate in detail About the various strategies To start investment or Business at the international Level by considering various Factors of international Finance	Understanding the business Model	Analyzing investment opportunities	Evaluating Business strategies and Investment strategies	Identifying factors that Have significant impact on business strategy	Able to measure market valuation in Carve out strategy
Can able to create and Formulate the investment plan Or business plan by adapting International finance Environment.	Understanding business opportunities or investment opportunities	Analysis of foreign direct investment V/S foreign indirect investment	Applying domain Expertise to get Through International risk exposure	Creating Business Plan or Investment plan	Able to analyses factor affecting investment Plan or business plan at International level

D. Course Description

The Course carries enough evidence for the students to understand the international finance with respect to various transactions of the economy that could make them compatible with the dynamic global Finance. The course is divided into 6 modules.

Address: - Sr. No. 69,70,71 NaigaonNasarapurPune, Maharashtra 412213. Website: https://www.navsahyadri.edu.in/E- mail- director@navsahyadri.edu.in

Mr. P N Suke	Prof. <u>Sagar Suke</u>	Dr. <u>Tanaji Dabade</u>	
President	Group Director	Director	

The course is divided into 6 modules:

- 1. Nature & Scope of International Finance
- 2. The Foreign Exchange Market
- 3. International funding, Global Capital markets and interest rate
- 4. International short-term financial Management
- 5. International bond market
- 6. Global Loan Syndication

The Course provides extensive knowledge for International finance conceptual framework-What is international finance? International financial institutions and regulatory such as IMF,WorldBank, WTO etc. Corporate Governance- Corporate governance and settings at different nations, Forex Management-International transactions and forex,forex risk management, International Financing and Investment Management-Global equity market and international bond market and Cross border financial opportunities

E. Learning Outcomes

Knowledge

K1	International finance conceptual framework
K2	Foreign Exchange Market
K3	Exchange rate risk and risk management
K3	Global capital market
K4	International Bond Market
K5	IFRS on foreign transactions

Attitude

A1	Critical thinking
A2	Reasoning
A3	Innovations
A4	Positive attitude
A5	Result Orientation

Skill

S 1	Analytical thinking
S2	Business tools
S3	Data analysis
S4	Strategies
S5	Concept application

F.Detailed Session Plan

Sr.No.	Topic (*)	Teaching tool or Pedagogy (with Time Break-Up)	Why the Topic is Taught (Learning Goal) (Mandatory)	Where it can be applied (Mandatory)	How it is aligned with Purpose (Mandatory)	Pre- reading	Session outcome/ Learning outcome	Course Outcome(Cos)
1	Introduction to International Finance (1)	Class Room Session	To get the exposure of International Financing and Investing	For International Business and Finance	Understanding and Analysis	International Finance - P.G. Apte	K1, K2, K4	CO1, CO2
2	Introduction to International Finance (2)	Class Room Session	To get the exposure of International Financing and Investing	For International Business and Finance	Understanding and Analysis	International Finance - P.G. Apte	K1, K2, K4, S2, S6	CO1, CO2
3	Introduction to International Finance (3)	Class Room Session	To get the exposure of International Financing and Investing	For International Business and Finance	Understanding and Analysis	International Finance - P.G. Apte	K1, K2, K4, S2, S6	CO1, CO2
			Understanding					(alantes

4	International Financial Institutions	Class Room Session	Role and Functions of International Agencies	For International Business and Finance	Understanding and Analysis	International Finance - P.G. Apte	K1, K2, K4, S2, S6	CO1, CO2
5	Foreign Exchange Market (1)	Class Room Session	Basic terms related to forex	Forex and Corporate Finance	Understanding and Analysis	International Finance - P.G. Apte	K1, K2, K4, S2, S6, A1, A4, S4,S1	CO1, CO2, CO3, CO6

	Foreign Exchange Market (2)	Class Room	To have critical understanding on Foreign exchange rate and mathematical	Forex and Corporate	Understanding	International Finance -	K1, K2, K4, S2, S6, A1, A4, S4,S1	CO1, CO2, CO3, CO6	
6		Session	calculations	Finance	and Analysis	P.G. Apte			
7	Foreign Exchange Market (3)	Class Room	To have critical understanding on Foreign exchange rate and mathematical	Forex and Corporate	Understanding and Analysis	International Finance -	K1,K2,K3,K4,S6,A 1,A5	CO1, CO2, CO3	
	Case Study - 1								
	Foreign		Learning					c a scally as	Tal. Bhor Dist. puno
								10	aux me a

	exchange market and transactions		Exchange rate spot rate, forward rate, cross rate	Forex and Corporate	Through Problem - solving	International Finance -	K1,K2,K3,K4,S6,A 1,A5	CO1, CO2, CO3
8	(1)	Practical		Finance	techniques	Mihir Desai		
	Case Study - 1							
	Foreign		Learning					
	exchange market and transactions		Relationship between PPP and Exchange rates	Forex and Corporate	Through Problem - solving	International Finance -	K1,K2,K3,K4,S6,A 1,A5	CO1, CO2, CO3
9	(2)	Practical		Finance	techniques	Mihir Desai		
	Case Study - 1							
	Foreign		To know					

exchange market and transactions		Exchange rate risk and risk management	Forex and Corporate	Through Problem - solving	International Finance -	KI,K2,K4, S2,S3,A1,A3	CO1, CO2, CO3, CO4
10 (3)	Practical		Finance	techniques	Mihir Desai		

Tal Bhor Clot Puno Clot Puno the state

11	Case Study-2- Exchange rate policy at MAS (1)	Class Room Session	Factors affecting monitory policy, capital account and current account,	Monetory policy Tools	Through Problem - solving techniques	International Finance - Mihir Desai	KI,K2,K4, S2,S3,A1,A3	CO1, CO2, CO3, CO4
12	Case Study-2- Exchange rate policy at MAS (2)	Class Room Session	Exchange rate behaviour, efficiency and forecasting	Monetory policy Tools	Through Problem - solving techniques	International Finance - Mihir Desai	KI,K2,K4, S2,S3,A1,A3, S6,S1	CO1, CO2, CO3, CO4
13	Case Study-2- Exchange rate policy at MAS (3)	Presentation	Interference of central bank and monitory authority in exchange rate adjustment	Monetory policy Tools	Through Problem - solving techniques	International Finance - Mihir Desai	KI,K2,K4, S2,S3,A1,A3, S6,S1	CO1, CO2, CO3, CO4
14	Case Study - 3 Innocents Abroad- Currencies and International stock return (1)	Class Room Session	Understanding Cost and benefit of international investing	Valuation of Returns through Equity and Forex	Data Analysis and Decision Making	International Finance - Mihir Desai	KI,K2,K4, S2,S3,A1,A3, S6,S1	CO1, CO2, CO3, CO4
15	Case Study - 3 Innocents Abroad- Currencies and International stock return (2)	Presentation	Understanding Impact of currencies on investment portfolios	Valuation of Returns through Equity and Forex	Data Analysis and Decision Making	International Finance - Mihir Desai	KI,K2,K4, S2,S3,A1,A3, S6,S1	CO1, CO2, CO3, CO4
16	Case Study - 3 Innocents Abroad- Currencies and International	Presentation	How CAPM changes in global context	Valuation of Returns through Equity and Forex	Data Analysis and Decision Making	International Finance - Mihir Desai	K5A1, A2, S1, S3, S5	CO4, CO5
								the tail Bhot

老 佳信

stock return (3)							
Global capital market (1)	Presentation	participants, issues,investors, intermediaries, ECB	International Financing & Investing	Business Acument	International Finance - P.G.Apte & Mihir Desai	K5A1, A2, S1, S3, S5	CO4, CO5
Global capital market (2)	Presentation	Concept and Application of ADR , GDR	International Financing & Investing	Business Acument	International Finance - P.G.Apte & Mihir Desai	K5A1, A2, S1, S3, S5	CO4, CO5
Global capital market (3)	Presentation	Domestic foreign currency loans - FCNR(B), EEFC	International Financing & Investing	Business Acument	International Finance - P.G.Apte & Mihir Desai	K5A1, A2, S1, S3, S5	CO4, CO5
Case-4 The Refinancing of Shangai General Motors (1)	Class Room Session	Understanding - Evaluation of JVs between multinational and local companies	International Financial Restructuring	Through Scanario Analysis	International Finance - Mihir Desai	KI,K2,K4, S2,S3,A1,A3, S6,S1	CO1, CO2, CO3, CO4
Case-4 The Refinancing of Shangai General Motors (2)	Class Room Session	Motivation for FDIs	International Financial Restructuring	Through Scanario Analysis	International Finance - Mihir Desai	KI,K2,K4, S2,S3,A1,A3, S6,S1, A2	CO1, CO2, CO3
Case-4 The Refinancing of Shangai General Motors (3)		Financing of overseas subsidiries through refinancing and Influence on firm due to currency	International Financial	Through Scanario	International Finance -	K1,K2,K4,A2,A3,S 4,S5	CO1, CO2, CO3, CO4
	stock return (3) Global capital market (1) Global capital market (2) Global capital market (2) Global capital market (3) Case-4 The Refinancing of Shangai General Motors (1) Case-4 The Refinancing of Shangai General Motors (2) Case-4 The Refinancing of Shangai General Motors (2)	stock return (3)Stock return (3)Global capital market (1)PresentationGlobal capital market (2)PresentationGlobal capital market (3)PresentationGlobal capital market (3)PresentationCase-4 The Refinancing of Shangai General Motors (1)Class Room SessionCase-4 The Refinancing of Shangai General Motors (2)Class Room SessionCase-4 The Refinancing of Shangai General Motors (2)Class Room Session	stock return (3)participants, issues,investors, intermediaries, ECBGlobal capital market (1)Presentationparticipants, issues,investors, intermediaries, ECBGlobal capital market (2)PresentationConcept and Application of ADR, GDRGlobal capital market (3)PresentationDomestic foreign currency loans - FCNR(B), EEFCCase-4 The Refinancing of Shangai General Motors (1)Class Room SessionUnderstanding - Evaluation of JVs between multinational and local companiesCase-4 The Refinancing of Shangai General Motors (2)Class Room SessionMotivation for FDIsCase-4 The Refinancing of Shangai General Motors (2)Class Room SessionMotivation for FDIsFinancing of Shangai General Motors (3)Financing of overseas subsidiries through refinancing and Influence on firm due to currency	stock return (3)participants, issues,investors, intermediaries, ECBInternational Financing & InvestingGlobal capital market (2)PresentationConcept and ADR , GDRInternational Financing & InvestingGlobal capital market (3)PresentationConcept and ADR , GDRInternational Financing & InvestingGlobal capital market (3)PresentationDomestic foreign currency loans - FCNR(B), EEFCInternational Financing & InvestingGlobal capital market (3)PresentationDomestic foreign currency loans - FCNR(B), EEFCInternational Financing & InvestingCase-4 The Refinancing of Shangai General Motors (1)Class Room SessionMotivation for FDIsInternational Financial RestructuringCase-4 The Refinancing of Shangai General Motors (2)Class Room SessionMotivation for FDIsInternational Financial RestructuringCase-4 The Refinancing of Shangai General Motors (2)Financing of overseas subsidiries through refinancing and Influence on firm due to currencyInternational Financial Restructuring	stock return (3)participants, issues,investors, intermediaries, ECBInternational Financing & InvestingBusiness AcumentGlobal capital market (1)PresentationConcept and Application of ADR , GDRInternational Financing & InvestingBusiness AcumentGlobal capital market (2)PresentationConcept and Application of ADR , GDRInternational Financing & InvestingBusiness AcumentGlobal capital market (3)PresentationDomestic foreign currency loans - FCNR(B), EEFCInternational Financing & InvestingBusiness AcumentCase-4 The Refinancing of Shangai General Motors (1)Class Room SessionUnderstanding - Evaluation of JVs between Motivation for FDIsInternational Financial RestructuringThrough Scanario AnalysisCase-4 The Refinancing of Shangai General Motors (2)Class Room SessionMotivation for FDIsInternational Financial RestructuringThrough Scanario AnalysisCase-4 The Refinancing of Shangai General Motors (2)Financing of SessionFinancing of sourcesAnalysisCase-4 The Refinancing of Shangai General Motors (3)Financing of sourcesThrough Financing and International Financing and International Financing and Influence on firm due to currencyThrough Finencial International Finencial International Finencial Scanario	stock return (3)Presentationparticipants, issues,investors, intermediaries, ECBInternational Financing & InvestingInternational Finance - P.G. Apte & AcumentInternational Finance - P.G. Apte & Mihir DesaiGlobal capital market (2)PresentationConcept and ADR , GDRInternational Financing & InvestingBusiness AcumentInternational Finance - P.G. Apte & Mihir DesaiGlobal capital market (3)PresentationConcept and ADR , GDRInternational Financing & InvestingBusiness AcumentInternational Finance - P.G. Apte & Mihir DesaiGlobal capital market (3)PresentationDomestic foreign currency loans - FCNR(B), EEFCInternational Financing & InvestingBusiness AcumentInternational Finance - P.G. Apte & Mihir DesaiCase-4 The Refinancing of Shangai General Motors (1)Class Room SessionUnderstanding - Evaluation of JVs between multinational and Iocal companiesInternational Financial RestructuringThrough ScanarioInternational Finance - Mihir DesaiCase-4 The Refinancing of Shangai General Motors (2)Class Room SessionMotivation for FDIsInternational Financial RestructuringThrough ScanarioInternational Finance - Mihir DesaiCase-4 The Refinancing of Shangai General Motors (2)Financing of overseas subsidiries through refinancing and Infuence on firm due to currencyInternational Financial RestructuringThrough AnalysisInternational <td>stock return (3)Image: Stock return (3)Image: Stock return (3)Image: Stock return (3)Image: Stock return (3)International Finance - P.G.Apte & Mihir DesaiK5A1, A2, S1, S3, S5Global capital market (2)PresentationConcept and Application of ADR , GDRInternational Financing & InvestingBusiness AcumentInternational Finance - P.G.Apte & Mihir DesaiK5A1, A2, S1, S3, S5Global capital market (2)PresentationConcept and ADR , GDRInternational Financing & InvestingBusiness AcumentInternational Finance - P.G.Apte & Mihir DesaiK5A1, A2, S1, S3, S5Global capital market (3)PresentationDomestic foreign currency loans - FCNR(B), EEFCInternational Financing & InvestingBusiness AcumentK5A1, A2, S1, S3, S5Case-4 The Refinancing of Shangai General Motors (1)Class Room SessionUnderstanding - Evaluation for FDIsInternational Financial RestructuringThrough AnalysisInternational Finance - Mihir DesaiKLK2,K4, S2,S3,A1,A3,S6,S1Case-4 The Refinancing of Shangai General Motors (2)Class Room SessionMotivation for FDIsInternational Financial RestructuringThrough AnalysisInternational Finance - Mihir DesaiKLX2,K4, S2,S3,A1,A3,S6,S1Case-4 The Refinancing of Shangai General Motors (3)Financing of overseas subsidiries through refinancing and financing and financing and ue to currencyInternational Financial Restructu</br></td>	stock return (3)Image: Stock return (3)Image: Stock return (3)Image: Stock return

老 作机

22		Presentation	composition of debt	Restructuring	Analysis	Mihir Desai			
								K. L. M.	
23	Case-5 Corporate Inversion- Stanley works and Lure of the tax havens (1)	Class Room Session	Introdcution in Corporate Inversion	Corporate Inversion and Taxation	Through Valuation Models	International Finance - Mihir Desai	K1,K2,K3,K4,A1, A3,S1,S2,S5	CO1, CO2, CO3, CO4, CO5	
24	Case-5 Corporate Inversion- Stanley works and Lure of the tax havens (2)	Class Room Session	Taxation on foreign activities	Corporate Inversion and Taxation	Through Valuation Models	International Finance - Mihir Desai	K1,K2,K3,K4,A1, A3,S1,S2,S5	CO1, CO2, CO3, CO4, CO5	
25	Case-5 Corporate Inversion- Stanley works and Lure of the tax havens (3)	Presentation	Market Valuation due to corporate inversion	International portfolio investment and international liquidity	Through Valuation Models	International Finance - Mihir Desai	K1,K2,K3,K4,A1, A3,S1,S2,S5	CO1, CO2, CO3, CO4, CO5	
	Case-5 Corporate Inversion- Stanley works and Lure of the tax havens		To get exposure on International portfolio investment and international liquidity	International portfolio investment and international	Through Valuation	International Finance -	K1,K2,K3,K4,A1, A3,S1,S2,S5	CO1, CO2, CO3, CO4, CO5	SPA NOA
								10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

26	(4)	Presentation		liquidity	Models	Mihir Desai		
27	Internatioan Bond Market Developments (1)	Class Room Session	To have conceputal background Foreign bond, Euro Bond	International Bond Market and Valuations	Decision Making and Forecating	International Finance - P.G.Apte & Mihir Desai	K1,K2,K3,K4,A1, A3,A4, S1,S2,S5,S6	CO1, CO2, CO3, CO4, CO5, CO6

28	Internatioan Bond Market Developments (2)	Class Room Session	FRN, Deep Discount bond, Zero coupon bond	International Bond Market and Valuations	Decision Making and Forecating	International Finance - P.G.Apte & Mihir Desai	K1,K2,K3,K4,A1, A3,A4, S1,S2,S5,S6	CO1, CO2, CO3, CO4, CO5, CO6
	Internatioan Bond Market Developments	Class Room	Loan agreement, Right and duties of managing and	International Bond Market	Decision Making and	International Finance - P.G.Apte &	K1,K2,K3,K4,A1,A 3,S1,S2,S3,S5,S6	CO1, CO2, CO3, CO4, CO5, CO6
29	(3)	Session	agent banks	and Valuations	Forecating	Mihir Desai		
30	Cross Border Financial Opportunities	Class Room Session	Overview of Cross border opprotunities	Invetsment and Financing Opprtunities Abroad	Critical Thinking and Analysis	International Finance - P.G.Apte & Mihir Desai	K1,K2,K3,K4,A1,A 3,S1,S2,S3,S5,S6	CO1, CO2, CO3, CO4, CO5, CO6
31	Case-6 - Nestle- Alcon (1)	Class Room Session	Advanatages and Disadvantages of Listing Techniques	Benefits of Listing and Delisiting	Critical Thinking and Analysis	International Finance - Mihir Desai	K1,K2,K3,K4,A1,A 3,S1,S2,S3,S5,S6	CO1, CO2, CO3, CO4, CO5, CO6
32	Case-6 - Nestle- Alcon (2)	Class Room Session	Value Business Units having different risk and return	Risk & Return at International levels	Critical Thinking and Analysis	International Finance - Mihir Desai	K1,K2,K3,K4,A1,A 3,S1,S2,S3,S5,S6	CO1, CO2, CO3, CO4, CO5, CO6

р. С. R. S. T. U. V.	33	Case-7 - Petrobras (1)	Class Room Session	Undersatnding - Corporate Governance in Emerging Markets	Corporate Governance	Pestle Analysis and Scenario Analysis	International Finance - Mihir Desai	K1,K2,K3,K4,A1, A3,A4, S1,S2,S5,S6	CO1, CO2, CO3, CO4, CO5, CO6
W. X. Y. AA. BB. CC.	34	Case-7 - Petrobras (2)	Class Room Session	Importance of listing of shares in US market	Corporate Governance	Pestle Analysis and Scenario Analysis	International Finance - Mihir Desai	K1,K2,K3,K4,A1, A3,A4, S1,S2,S5,S6	CO1, CO2, CO3, CO4, CO5, CO6
DD. EE. FF. GG. HH. JJ.	35	Case-7 - Petrobras (3)	Presentation	Issues in valuation in emerging market and cross	Listing of shares in International	Pestle Analysis and Scenario	International Finance -	K1,K2,K3,K4,A1,A 3,S1,S2,S3,S5,S6	CO1, CO2, CO3, CO4, CO5, CO6
	33	International Financial Reporting standard on foreign	Class Room	Understanding and Applicability of IFRS on foreign transactions	Implication of IFRS in Forei gn	Understanding Accounting	International Finance - P.G.Apte &	K1,K2,K3,K4,A1,A 3,S1,S2,S3,S5,S6	CO1, CO2, CO3, CO4, CO5, CO6
3	6	transactions	Session		transaction	Standards	Mihir Desai		

Details of Text book and references

Text Book (T)

T1.P.G.ApteInternational FinanceMcGraw-HillEducation.

КК.

T2.Mihir Desai International Finance

Reference Books(R)

R1.MihirDesai- International Finance-Cases R2:Damodaran,A. (1996).Corporate finance. Wiley.

Web Resources

R3.YouTubevideos of Ashwath Damodaran on corporate finance and International Finance

LL. Evaluation Scheme

	Assessments Planed – Title	Marks		Deadline	Evaluation	
Sr. No		Allocated	Rollout Date	/Conduct date	Deadline	Feedback Slot
	Case Study–I(Assignment1)	10				
1			Week2	Week3	Week4	Week4
	Mini-Project-Financial Model for Portfolio mgmt.	15				
2			Week4	Week5	Week8	Week8
	Assignment-3(Descriptive Questions)	10				
3			Week6	Week7	Week10	Week10
	MCQ Test	10				
4			Week8	Week8	Week8	Week8
	Class Participation and Attendance	05				
5			All classes	All classes	All classes	All classes
	MidTerm{As per exam calendar}	15	As per	As per	As per	As per
6			schedule	schedule	schedule	schedule
	EndTerm{As per exam calendar}	35	As per	As per	As per	As per
7			schedule	schedule	schedule	schedule
	Total	100				

CASESTUDYDETAILS:

CaseNo.	Case Details	Session
1	CaseStudy1-ForeignExchangeMarketandTransactions	Session4
2	CaseStudy2-Foreignexchangepolicyat MAS	Session12
3	Case Study3– Innocent Abroad-Currencies and International stock market returns	Session19
4	CaseStudy4 – Currency Hedging at AIFS	Session25
5	CaseStudy5 –Nestle-Alcon –Value of Delisting	Session29

Course Objective	Knowledge	Attitude	Skill
CO – 1	K1	A1, A2	S1, S4
CO – 2	K2	A2	\$1,\$3
CO – 3	К3	A5	S5
CO – 4	K3, K5	A2, A1	S3
CO – 5	K3, K4	A2,A3	S1, S3
CO-6		A5	S4

MM. Alignment/Mapping of Cos & POs (Course Articulation Matrix) (a) Alignment/Mapping of COs&POs

CO Mapping with Teaching Pedagogy

Course	Class	Case	Tutorial
Outcomes	room	study	
	session		
CO 1	\checkmark		
CO.2	✓	\checkmark	√
CO.3		\checkmark	
CO.4	✓	\checkmark	\checkmark
CO.5	~	\checkmark	\checkmark
CO.6		\checkmark	\checkmark

(b) CO Mapping with Assessment tools

Course	Case Study	Mini	Assignment	MCQ	Class	Mid	End
Outcomes	(Assignment	Project	No.3	Test	Participation	Term	Term
	1)				&Attendan		Exam
					ce		
Total	10	15	10	10	05	15	35
CO 1	3	2		4	1	5	8
CO.2	2	3	1	4	1	5	3
CO.3	3	3	3	2	1	5	6
CO.4		2	3		1		7
CO.5		3			1		4
CO.6	2	2	3				7

(c) Mapping/Alignment of Cos with POs(Programme Articulation Matrix)

Programme Outcomes	CO.1	CO.2	CO.3	CO.4	CO.5	CO.6
PO 1		2		3		3
PO 2	2	3	3		1	
PO 3	2		2	2		
PO 4		1	1			
PO 5	1				1	
PO 6			3	3	3	1
PO 7	1	3				
PO 8		3			1	3
PO 9						Janasomer

1=thestrengthofco-relationbetweenCOandPOisWeak,2=strengthofco-relation between CO and PO is Medium, 3= strength of co-relation is High

NN.Brief Description of evaluation components

Evaluation 1ASSIGNMENT1

TOPIC:Case Study(Assignment1)

(10Marks)

Rollout Date	Submission Deadline	Evaluation Date	Feedback Slot
Week2	Week3	Week4	Week4

Assignment Description:

CaseTitle: Exchange Rate Policyat the Monetary Authority of Singapore

Guidelines for the Case study:

Solve case using following Points:

- Case Synopsis
- Problem definition
- Learning objectives
- Alternatives solutions
- Criteria
- Analysis
- Best possible solution
- Key take away
- What happened next?

Topic Covered:

The link between the current account and the capital account, the difference between real and nominal exchange rates, the consequences of shocks under fixed and floating exchange rate regimes.

Competency Expected

- 1. Domain Knowledge
 - a. Key responsibilities of MAS
 - b. Exchange rate and natural policy tool for Singapore Economy
 - c. Factors the amount of liquidity to inject or withdraw from the banking system depended:
 - d. Difficulty for MAS to influence foreign demand through domestic monetary policy
 - e. How HongKong could sustain during Asian financial crises?
 - f. Relationship between RER and NX

- g. Why PPP to behold constant before determination of exchange rate?
- 2. Critical Analysis
- 3. Problem Solving
- 4. Global Perspective
- 5. Business Acumen
- 6. Cultural Sensitivity
- 7. Business Tools

Submission Guideline:

Submission Mode:Hard Copy Printout –A4Sheet

- ✓ Font–Time New Roman
- ✓ Font Size–Heading–14–Content -12
- ✓ Line Spacing–1.5(Add spacein before and after paragraph)

Frontpage- Mention Studentname, rollno., section, assignment number and submitted

Guidelines for Evaluation & Rubrics

Evaluation Guidelines

		Assignment Title:Cas	e Study	v(Assignment1)
		Percentage Weightag	ge:10Ma	rks
Evaluation	CO	Assignment Relevance with PO)	Topic Outline
Parameter				
Understanding of	CO2	Students will be able to	PO1,	To study about the current account
the Case/Topics-		understand the case and	PO3,	and capital account, RER and NX,
2 marks		apply basic International		To understand unholy trinity and
		finance		its consequences.
		terminologies with givencase		
Problem in the	CO4	The student will be able to	PO8,	The students must solve problem /
case/Topics-2		identify the problems in the	PO3	develop thought process / critically
marks		case		analyze
Solution for the	CO5	The student will be able to	PO2	Critical thinking and scenario based
Case/Topics-4		find out alternative solutions	PO3	Analysis and Presentation skills
marks		for problems	PO7	(Content & Context)
Replying to the	CO4	Student will identify the best	PO8	Developing problem solving ability
Answers and		possible solutions within		
giving innovative		criteria and provide key take		
solutions for the		away from this case study.		
cases and				
questions asked				
2 marks				wanagomes

1)Student will solve the case based on given parameters and
standard guideline provided to solve case study

Rubrics

Rubrics for Assignments (Weightage10markseach)

Parameter	Category	Scores	Detail Description
	Exceptional	81%-100	
Understanding of the		%	Understood the Case/topic well
Case/ Topics	Advance	66%-80%	Average Understanding of the Case/topic
(3)	Intermediate	51%-65%	Understood Case/ topic but not able to explain
	Basic	26%-50%	Basic Understanding
	Poor	0% to 25%	No Understanding
	Exceptional	81%-100	
Problem in the case/		%	Written the problem well
Topics	Advance	66%-80%	Partial
(2)	Intermediate	51%-65%	Average
	Basic	26%-50%	Basic Understanding
	Poor	0%to 25%	No Understanding
	Exceptional	81%-100	Complete application of concept
Solution for		%	
the Case/	Advance	66%-80%	Practical application of Concepts
Topics (5)	Intermediate	51%-65%	Average Application
	Basic	26%-50%	Basic Application
	Poor	0%to 25%	No Application
		81%-100	Excellent explanation of the whole topic with
	Exceptional	%	important points and concepts. Timely
Replying to the			Submission of the cases and solutions required
Answers and giving			Good explanation of the whole case with
innovative	Advance	66%-80%	important points and concepts but missed on
solutions for the			some points
cases and questions	Intermediate	51%-65%	Average explanation of the whole case but
asked.			Missed on important points and concepts
(5)	Basic	26%-50%	Poor explanation of the whole case/ Topic
			With important points and concepts
	Poor	0%to 25%	No Explanation & Non submission

Benchmark Assignment Link-

https://drive.google.com/drive/folders/1Nqs0Lm5TWwwxdqz_tJrX1tNj2DYclvK3?usp=sharing

Evaluation2

MINI PROJECTAND PRESENTATION

TOPIC: Mini Project

(15Marks)

Rollout Date	Submission Deadline	Evaluation Date	Feedback Slot
Week4	Week5	Week8	Week8

Project Description:

Case Title: Innocents Abroad: Currencies and International Stock Returns.

Topics Covered in Assessment-

- 1. Analyzing large data set using excel worksheet to explore international diversification
- 2. Identify the cost and benefit of international investing through portfolio formation.
- 3. Evaluate the impact of currencies on investment portfolio formation
- 4. Explore how the CAPM changes in the context of global market

Guidelines for the Case study

Students will prepare spreadsheet which includes

- 1) Index value\$
- 2) Monthly return local
- 3) Monthly return \$
- 4) Currency return and Standard Deviation Local
- 5) Currency return and Standard Deviation\$
- 6) Local and \$ returns compared
- 7) Country return local charts
- 8) Country return \$charts
- 9) Sharpe ratio
- $10)\,\text{Co-relation}$ of monthly return local
- 11) Co-relation of monthly return \$
- 12) Comparison of co-relation
- 13) EAFE and S&P (equity and currency)
- 14) EM and S&P (equity and currency)

- 15) EAFE,EM and S&P monthly return
- 16) Local EAFE,S&P portfolio
- 17) \$EAFE,S&P portfolio
- 18) Portfolio Summary Data
- 19) Chart1
- 20) Chart2
- 21) Chart3
- 22) Chart4
- 23) Chart5
- 24) Chart6

SCPS Criteria:

- Sector Information
- Company Information–describe their product and services
- Business Model

Topic Covered:

- Chapter1-IntroductionofInternational Finance
- Chapter2–Forex Market
- Chapter3–Global Capital Market
- Chapter4– International Bond Market
- Chapter5–International Portfolio Management
- Chapter6– Efficient Portfolio Frontier

Competency Expected

- Domain Knowledge
 - 1. How to demonstrate portfolio return to investors?
 - 2. Foreign equity return
 - 3. What is efficient frontier? Which portfolio is more efficient as compare to others?
- Situational Analysis
- Problem Solving
- Decision Making

- Innovation Skill
- Global Perspective
- Business Acumen
- Cultural Sensitivity
- Business Tools
- Strategic Thinking
- Analytical Thinking

Submission Mode:

Mini Project-

✓ Excel Spreadsheet

PPT Presentation-

- Number of Slides-15 to 17
- Time- 15 Minutes

Guidelines for Evaluation & Rubrics

Evaluation Guidelines

		Assignment Title: Ca	se Stud	y(Assignment1)
		PercentageWeightag	e:15Mai	rks
Evaluation Parameter	СО	Assignment Relevance with PO	C	Topic Outline
Understanding of the Case/Topics- 2 marks	CO2	Students will be able to understand the case and apply basic International finance terminologies with given case	PO2, PO3,	To study about the international portfolio and risk – return tradeoffs through currency returns and index returns.
Problem in the case/Topics-2 marks	CO4	The student will be able to identify the problems in the case	PO8, PO3	The students must solve problem / develop thought process / critically analyze
Solution for he Case/Topics-4 marks	CO5	The student will be able to find out alternative solutionsPO6PO7PO7		Critical thinking and scenario based Analysis and Presentation skills (Content & Context)
Replying to theAnswersandgiving innovativesolutions for thecasesand	CO4	Student will identify the best possible solutions within criteria and provide key take away from this case study.	PO8	Developing problem solving ability

Questions asked 2 marks	
	1)Student will solve the case based on given parameters and standard guideline provided to solve case study

Mini Project Rubrics-15Marks

			Student understood the various tools of
			Descriptive statistics and used for analysis.
			Extensive use of co-relation, standard
			deviation, and Variances to measures risk and
	Exceptional	81%-100 %	Return from the portfolio
			Student understood the various tools of
			Descriptive statistics and used for analysis.
			Extensive use of co-relation, standard deviation
Descriptive	Advance	66%-80%	Only
Statistics			Student understood the various tools of
(5 Marks)			Descriptive statistics and used for analysis.
			Average use of co-relation, standard deviation,
			And Variances to measures risk and return from
	Intermediate	51%-65%	the portfolio
			Student understood the various tools of
			Descriptive statistics and used for analysis but
	Basic	26%-50%	Average use of co-relation, standard deviation,
			Student does not understand the various tools of
	Poor	0%to 25%	Descriptive statistics.
			Student understood the Sharperatio and use of
			Sharperatioin portfolio management and its
	Exceptional	81%-100 %	Analysis
			Student understood the Sharperatio and use of
			Sharperation portfolio management but little
	Advance	66%-80%	Analysis done
SharpeRatio			Student understood the Sharperatio and use of
Analysis			Sharperation portfolio management and but
(5 Marks)	Intermediate	51%-65%	No analysis done
			Student understood the Sharperatio but do not
			know use of Sharpe ration in portfolio
	Basic	26%-50%	Management and its analysis
			Student does not understood the Sharperatio
			and use of Sharpe ration in portfolio
	Poor	0%to 25%	Management and its analysis

Tal Bhor

DIS

Efficient Portfolio Frontier	Exceptional	81%-100 %	Student understood the Efficient PortfolioFrontier and use of this in portfolio management and its Analysis
(5 Marks)	Advance	66%-80%	Student understood the Efficient PortfolioFrontier And use of Efficient PortfolioFrontier in portfolio Management but little analysis done

			Student understood the Efficient Portfolio Frontier
	Intermediate	51%-65%	and use of Efficient Portfolio Frontier in portfolio
			management and but no analysis done
			Student understood the Efficient Portfolio Frontier
	Basic	26%-50%	but do not know use of Efficient Portfolio Frontier
			Inport folio management and its analysis
			Student does not understood the Efficient Portfolio
	Poor	0%to 25%	Frontier and use of Efficient Portfolio Frontier in
			Portfolio management and its analysis
	Exceptional	81%-100 %	Student understood how to prepare charts using
			Data and analysis of charts extensively
			Student understood how to prepare charts using
Charts	Advance	66%-80%	data and analysis of charts but limited
Preparationand	Intermediate	51%-65%	Student understood how to prepare charts using
Analysis			Data but no proper analysis of charts
(2.5Marks)	Basic	26%-50%	Student understood how to prepare charts using
			Data but no analysis of charts at all
	Poor	0%to 25%	Student does not understand how to prepare
			Charts using data and analysis of charts.
	Exceptional	81%-100 %	Student has done best overall analysis and
			mentioned appropriate key takeaway
	Advance	66%-80%	Student has done better overall analysis and
OverallAnalysis			mentioned appropriate key take away
and	Intermediate	51%-65%	Student has done average overall analysis and
KeyTakeAway			mentioned related key take away
(2.5 Marks)	Basic	26%-50%	Student has done good overall analysis and
			mentioned related key take away
	Poor	0%to 25%	Student has not done any overall analysis and
			did not mention key takeaway.

Benchmark Assignment Link-

https://drive.google.com/drive/folders/1loq_y11A5zhW6AmdMjSjGkB7j5cDRFQL?usp=sharing

Evaluation 3ASSIGNMENT <u>3</u>

TOPIC: Individual – Assignment

Title: Questions on various topics

(10Marks)

Rollout Date	Submission Deadline	Evaluation Date	Feedback Slot
	31		al Cist Public A

Week6	Week7	Week10	Week10

Assignment Description:

Write Answers of the Questions based on following topics:

- 1) International Finance
- 2) Forex Market
- 3) Global Capital Market
- 4) IFRSwith respect to foreign transactions
- 5) Arbitrage Opportunities
- 6) International Economics

Guidelines for the Assignment:

Individual hand written assignment to be completed and submit on Google drive link shared with you.

Topic Covered:

Foreign Exchange Market, International Bond Market, Global Capita IMarket, IFRSwith respect to foreign transactions.

Competency Expected

- 1. Domain Knowledge
 - a. International Finance
 - b. Forex Market
 - c. Global Capital Market
 - d. IFRS with respect to foreign transactions
 - e. Arbitrage Opportunities
 - f. International Economics
- 2. Critical Analysis
- 3. Problem Solving
- 4. Business Acumen
- 5. Creativity Skill
- 6. Concept application ability
- 7. Decision making
- 8. Positive attitude and integrity

Submission Guideline:

Submission Mode: Hard Copy Printout–A4Sheet

- i. Font–TimeNewRoman
- ii. FontSize–Heading–14–Content -12

- iii. LineSpacing–1.5(Add space in before and after paragraph)
- iv. FrontPage–MentionStudentname,rollno.,section, assignment number and submitted to.

Evaluation Mapping

Evaluation Parameter	СО	РО
Domain Knowledge	CO1,CO2and	PO1
	CO 4	
Problem Solving	CO 4	PO6
Presentations	CO6	PO9
Writing Skill	CO3,CO6	PO8, PO1

Assignment 3 Rubrics (10 Marks)

	Category	Scores	Detail Description
	Exceptional	81%-100 %	Detailed Explanation With Proper Flow
	Advance	66%-80%	Detailed Explanation Without Proper Flow
Domain	Intermediate	51%-65%	Average Explanation With Proper Flow
Knowledge	Basic	26%-50%	Average Explanation Without Proper Flow
	Poor	0%to 25%	Poor Explanation Without Proper Flow
	Exceptional	81%-100 %	Properly Understood the problem, well comprehended, meticulously figured out the concepts and tools to be applied
Problem	Advance	66%-80%	Properly Understood the problem, well comprehended, somewhat able to figure out which concepts and tools to be applied
solving skill	Intermediate	51%-65%	Properly Understood the problem, well comprehended, but not able to figure out which concepts and tools to Be applied
	Basic	26%-50%	Properly Understood the problem, well comprehended, but not able to comprehend how to solve problems
	Poor	0%to 25%	Notable to understand the problem properly

	Exceptional	81%-100 %	Exceptional Presentation Skills
	Advance	66%-80%	Better Presentation Skills
Presentation	Intermediate	51%-65%	Average Presentation Skills
	Basic	26%-50%	Below Average Presentation Skills
	Poor	0%to 25%	Poor Presentation Skills
	Exceptional	81%-100 %	Exceptional Writing Skills
	Advance	66%-80%	Better Writing Skills
Writing	Intermediate	51%-65%	Average Writing Skills
skill			
	Basic	26%-50%	Below Average Writing Skills
	Poor	0%to 25%	Poor Writing Skills

Benchmark Assignment Link-

https://drive.google.com/drive/folders/1LDegmquUE_KqrPkpvg-d2OIhzSsTproi?usp=sharing

Evaluation 4

<u>MCQ 1</u>

TOPIC:MCQ-NCP

(10marks)

Rollout Date	Submission Deadline	Evaluation Date	Feedback Slot
Week8	Week8	Week8	Week8

Assignment description:

Students should undergone one online MCQ test for chapter 1 and 2–Scope and Importance of International Finance and Foreign exchange market

Each question will carry one mark, total 10 questions will be asked to the students to evaluate their domain knowledge.

MCQTest: Basic test will be conducted to examine the finance concepts w.r.t.international level viz. Scope and importance of international finance, foreign exchange market, PPP and IRP and Current account and Capital account

Topic Covered:

- 1. Overview of International Finance
- 2. Foreign exchange market
- 3. Purchasing power parity and IRP
- 4. Current Account and Capital Account

Competency Expected

1. Domain Knowledge

- i. Overview of International Finance\
- ii. Foreign exchange market
- iii. Purchasing power parity and IRP
- iv. Current Account and Capital Account
- 2. Critical Analysis
- 3. Problem Solving
- 4. Logical Interpretation
- 5. Business Acumen

Submission Guidelines:

✓ MCQ Test will be held through ERP.

Evaluation Mapping

Evaluation Parameter	СО	РО
Domain Knowledge	CO1,CO2and	PO1
	CO 4	
Problem Solving	CO 3	PO6
Numerical Ability	CO 4	PO5
Critical Thinking	CO5	PO6

MCQ Rubrics (10Marks):

Parameter	Category	Scores	Detail Description
Domain	Exceptional	81%-100 %	Student could solve all questions and scored between 81% to 100%
Knowledge Problem Solving Numerical Ability	Advance	66%-80%	Student could solve all questions and scored between 66% to 80%
Critical Thinking(10	Intermediate	51%-65%	Student could solve all questions and scored between51% to 65%
Marks)	Basic	26%-50%	Student could solve some questions and scored between 26% to 50%

		Student could solve some questions and scored between 0% to
Poor	0%to25%	25%

Evaluation 5 Class Participation

Class Participation Marks: Marks allotted on the basis of attendance, active involvement during sessions and discipline of the student

Mid Term Examination

There will be of one and half hour duration. There will be two types of the questions asked in the Mid-term: i) MCQ's ii) Practical Questions

In first part of the question paper, there will be 5MCQ questions pertaining to the different concepts of the course. Students are expected to answer these questions by selecting one option out of 4 options.

In second part, there will be two Numerical based on a Small case. Questions shall be set to assess the knowledge acquired and application of the knowledge in new situation as well as synthesis of the knowledge. Students are expected to approach the answer logically and they are encouraged to give examples to illustrate their point. Students should aim for neat and systematic organization of the content and elegant and lucid style of writing. The answers should be precise and to the point.

Comprehensive End Term Examination:

ComprehensiveEndTermExaminationwillbeofthree-hourduration.Asetof6-8questionswill be asked which application will be oriented.

Questions shall beset to assess the critical thinking and analytical skills of the students and ability to apply concepts in real life situation. Students are expected to look in close detail and establish the key facts and important issues surrounding a topic and it must be linked to relevant theory/ theories.

The answers should be precise and to the point and under no circumstances should exceed 300 words. You will be penalized for wastage of words/paper/time (mine as well as yours), repetition, vague answers and grammatical and spelling errors.

Students should aim for neat and systematic organization of the content, elegant, and lucid style of writing.

L. Plagiarism

We are committed to upholding the highest standards of academic integrity and honesty. Plagiarism in any form is unacceptable and will be treated seriously. All such cases will be referred to the appropriate Institute body for suitable disciplinary action. All cases will be dealt as per institute plagiarism policy.

M. Makeup Policy

We will follow standard institute Make-Up policy.

N. Consultation Hours

The students can meet the Course instructor on matters related to the course being taught on all days he is available on campus after taking prior appointment through mail. Instead of personal meetings, they can also request responses through emails. Phone calls should be avoided except in cases of emergency. Course instructor will try to respond to the best of his ability.

O. Grading Policy

Standard Institute grading policy will be followed.

P. Student Attendance Policy

Institute attendance policy will be followed.

No make-up examination shall be granted to such student who has been prohibited to take the regular examination on ground of attendance. This shall be applicable for all Mid-Semester/Mid-Term examinations and Comprehensive examination.

Monitoring course attendance is a student responsibility and students are encouraged to check the status of their attendance every day on the ERP.

Q. Student's roles & responsibilities

All students must read these guidelines carefully and understand them fully.

Sr.	Guidelines
No	
1	All students must be seated in the class before the commencement of the session. The
	class room will be bolted from inside after this time period.
2	You are expected to read all topics/cases etc. Before coming to the class.
3	All students are expected to participate actively in discussions that take place in the
	class room.
4	You will have to maintain100% attendance in the class. Leave shall be granted only
	with prior permission for urgent & essential work only.
5	You will submit all types of assignments within given time frame.
6	You will work in team & contribute to the team functions.
7	You will be also asked to teach in your class.
8	You will undertake field and real time projects.
9	You will actively engage yourself final activities in class. Any absence will be dealt
	with separately according to the code of conduct.
10	You will come in the class properly dressed and neatly trimmed hair and clean shaven.
	The dress code is prescribed institute dress code.

R. Contact details & Interaction Timing

Course Instructor Name: Dr.LaxmanB.Doiphode, E Mail ID: laxmanacademic@gmail.com Desk Tel.No: 8551046292 Contact Days &Time: Monday to Saturday :As per the prior appointment.

End of the Course handout

Dr.Tanaji Dabade Director

